DIFFERENTIAL FORMS ON WASSERSTEIN SPACE AND INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS

WILFRID GANGBO, HWA KIL KIM, AND TOMMASO PACINI

Abstract

Let \mathcal{M} denote the space of probability measures on \mathbb{R}^{D} endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in \mathcal{M} was introduced in [4]. In this paper we develop a calculus for the corresponding class of differential forms on \mathcal{M}. In particular we prove an analogue of Green's theorem for 1 -forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For $D=2 d$ we then define a symplectic distribution on \mathcal{M} in terms of this calculus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced in [3]. Throughout the paper we emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of \mathbb{R}^{D}.

1. Introduction

Historically speaking, the main goal of Symplectic Geometry has been to provide the mathematical formalism and the tools to define and study the most fundamental class of equations within classical Mechanics, Hamiltonian ODEs. Lie groups and group actions provide a key ingredient, in particular to describe the symmetries of the equations and to find the corresponding preserved quantities.

As the range of physical examples of interest expanded to encompass continuous media, fields, etc., there arose the question of reaching an analogous theory for PDEs. It has long been understood that many PDEs should admit a reformulation as infinite-dimensional Hamiltonian systems. A deep early example of this is the work of BornInfeld [8], [9] and Pauli [38], who started from a Hamiltonian formulation of Maxwell's equations to develop a quantum field theory in which the commutator of operators is analogous to the Poisson brackets used in the classical theory. Further examples include the wave and Klein-Gordon equations (cfr. e.g. [14], [30]), the relativistic and

[^0]non-relativistic Maxwell-Vlasov equations [7], [31], [13], and the Euler incompressible equations [6].

In each case it is necessary to define an appropriate phase space, build a symplectic or Poisson structure on it, find an appropriate energy functional, then show that the PDE coincides with the corresponding Hamiltonian flow. For various reasons, however, the results are often more formal than rigorous. In particular, existence and uniqueness theorems for PDEs require a good notion of weak solutions which need to be incorporated into the configuration and phase spaces; the geometric structure of these spaces needs to be carefully worked out; the functionals need the appropriate degree of regularity, etc. The necessary techniques, cfr. e.g. [14], [17], can become quite complicated and ad hoc.

The purpose of this paper is to provide the basis for a new framework for defining and studying Hamiltonian PDEs. The configuration space we rely on is the Wasserstein space \mathcal{M} of non-negative Borel measures on \mathbb{R}^{D} with total mass 1 and finite second moment. Over the past decade it has become clear that \mathcal{M} provides a very useful space of weak solutions for those PDEs in which total mass is preserved. One of its main virtues is that it provides a unified theory for studying these equations. In particular, the foundation of the theory of Wasserstein spaces comes from Optimal Transport and Calculus of Variations, and these provide a toolbox which can be expected to be uniformly useful throughout the theory. Working in \mathcal{M} also allows for extremely singular initial data, providing a bridge between PDEs and ODEs when the initial data is a Dirac measure.

The main geometric structure on \mathcal{M} is that of a metric space. The geometric and analytic features of this structure have been intensively studied, cfr. e.g. [4], [11], [12], [32], [37]. In particular the work [4] has developed a theory of gradient flows on metric spaces. In this work the technical basis for the notion of weak solutions to a flow on \mathcal{M} is provided by the theory of 2-absolutely continuous curves. In particular, [4] develops a differential calculus for this class of curves including a notion of "tangent space" for each $\mu \in \mathcal{M}$. Applied to \mathcal{M}, this allows for a rigorous reformulation of many standard PDEs as gradient flows on \mathcal{M}. Overall, this viewpoint has led to important new insights and results, cfr. e.g. [2], [4], [12], [22], [37]. Topics such as geodesics, curvature and connections on \mathcal{M} have also received much attention, cfr. [40], [41], [26], [27].

In the case $D=2 d$, recent work [3] indicates that other classes of PDEs can be viewed as Hamiltonian flows on \mathcal{M}. Developing this idea requires however a rigorous symplectic formalism for \mathcal{M}, adapted to
the viewpoint of [4]. Our paper achieves two main goals. The first is to develop a general theory of differential forms on \mathcal{M}. We present this in Sections 4 and 5. This calculus should be thought of as dual to the calculus of absolutely continuous curves. Our main result here, Theorem 5.33, is an analogue of Green's theorem for 1-forms and leads to a proof that every closed 1-form on \mathcal{M} is, in a specific sense, exact. The second goal is to show that there exists a natural symplectic and Hamiltonian formalism for \mathcal{M} which is compatible with this calculus of curves and forms. The appropriate notions are defined and studied in Sections 6 and 7.

Given any mathematical construction, it is a fair question if it can be considered "the most natural" of its kind. It is well known for example that cotangent bundles admit a "canonical" symplectic structure. It is an important fact, discussed in Section 7, that on a non-technical level our symplectic formalism turns out to be formally equivalent to the Poisson structure considered in [31], cfr. also [23] and [26]. From the geometric point of view it is clear that the structure in [31] is indeed an extremely natural choice. The choice of \mathcal{M} as a configuration space is also both natural and classical. The difference between our paper and the previous literature appears precisely on the technical level, starting with the choice of geometric structure on \mathcal{M}. Specifically, whereas previous work tends to rely on various adaptations of differential geometric techniques, we choose the methods of Optimal Transport. The technical effort involved is justified by the final result: while previous studies are generally forced to restrict to smooth measures and functionals, our methods allow us to present a uniform theory which includes all singular measures and assumes very little regularity on the functionals. Sections 5.2 through 5.6 are an example of the technicalities this entails. Section 5.1 provides instead an example of the simplifications which occur when one assumes a higher degree of regularity.

By analogy with the case of gradient flows we expect that our framework and results will provide new impulse and direction to the development of the theory of Hamiltonian PDEs. In particular, previous work and other work in progress inspired by these results lead to existence results for singular initial data [3], existence results for Hamiltonians satisfying weak regularity conditions [24], and to the development of a weak KAM theory for the nonlinear Vlasov equation [19]. It is to be expected that in the process of these developments our regularity assumptions will be even further relaxed so as to broaden the range of applications. We likewise expect that the geometric ideas underlying Symplectic Geometry and Geometric Mechanics will continue to play an important role in the development of the Wasserstein theory
of Hamiltonian systems on \mathcal{M}. For example, in a very rough sense the relationship between our methods and those implicit in [31] can be thought of as analogous to the relationship between [17] and [6]. A connection between the choice of using Lie groups (as in [17] and [6]) or the space of measures as configuration spaces is provided by the process of symplectic reduction, cfr. [29], [30]. Throughout this article we thus stress the geometric viewpoint, with particular attention to the role played by certain group actions.

In recent years Wasserstein spaces have also been very useful in the field of Geometric Inequalities, cfr. e.g. [1], [15], [16], [28]. Most recently, the theory of Wasserstein spaces has started producing results in Metric and Riemannian Geometry, cfr. e.g. [33], [27], [40], [41]. Thus there exist at least three distinct communities which may be interested in these spaces: people working in Analysis/PDEs/Calculus of Variations, people in Geometrical Mechanics, people in Geometry. Concerning the exposition of our results, we have tried to take this into account in various ways: (i) by incorporating into the presentation an abundance of background material; (ii) by emphasizing the general geometric setting behind many of our constructions; (iii) by avoiding maximum generality in the results themselves, in particular by often restricting to the simplest case of interest, Euclidean spaces. As much as possible we have also tried to keep the background material and the purely formal arguments separate from the main body of the article via a careful subdivision into sections and an appendix. We now briefly summarize the contents of each section.

Section 2 contains a brief introduction to the topological and differentiable structure (in the weak sense of [4]) of \mathcal{M}. Likewise, Appendix A reviews various notions from Differential Geometry including Lie derivatives, differential forms, Lie groups and group actions. The material in both is completely standard, but may still be useful to some readers. Section 3 provides a bridge between these two parts by revisiting the differentiable structure of \mathcal{M} in terms of group actions. Although this point of view is maybe implicit in [4], it seems worthwhile to emphasize it. On a purely formal level, it leads to the conclusion that \mathcal{M} should roughly be thought of as a stratified rather than a smooth manifold, see Section 3.2. It also relates the sets $\mathbb{R}^{D} \subset \mathcal{M} \subset\left(C_{c}^{\infty}\right)^{*}$. The first inclusion, based on Dirac measures, shows that the theory on \mathcal{M} specializes by restriction to the standard theory on \mathbb{R}^{D} : this should be thought of as a fundamental test in this field, to be satisfied by any new theory on \mathcal{M}. The second inclusion provides background for relating the constructions of Section 6.2 to the work [31]. Overall, Section 3 is perhaps more intuitive than rigorous; however it does seem to
provide a useful point of view on \mathcal{M} and it provides an intuitive basis for the developments in the following sections. Section 4 defines the basic objects of study for a calculus on \mathcal{M}, namely differential forms, push-forward operations and an exterior differential operator. It also introduces "pseudo-forms" as a weaker version of the same objects, and specifies the relationship between them in terms of a projection operator. Pseudo-forms reappear in Section 5 as the main object of study, mainly because they generally enjoy better regularity properties than the corresponding forms: the latter depend on the projection operator, whose degree of smoothness is not yet well-understood. The main result of this section is an analogue of Green's theorem for certain annuli in \mathcal{M}, Theorem 5.33. Stating and proving this result requires a good understanding of the measurability and integrability properties of pseudo 1 -forms. We achieve this in several stages. The first step is to introduce a notion of regularity for pseudo 1 -forms, cfr. Definition 5.4. We then study the continuity and differentiability properties of regular forms. We also study the approximation of 2-absolutely continuous curves by smoother curves. Combining these results leads to the required understanding, in Section 5.5, of the behaviour of pseudo 1 -forms under integration. Our main application of Theorem 5.33 is Corollary 5.35, which shows that the 1 -form defined by any closed pseudo 1 -form on \mathcal{M} is exact. This shows that the corresponding first cohomology group, in the sense of de Rham, vanishes. In Section 6 we move on towards Symplectic Geometry, specializing to the case $D=2 d$. The main material is in Section 6.2: for each $\mu \in \mathcal{M}$ we introduce a particular subspace of the tangent space $T_{\mu} \mathcal{M}$ and show that it carries a natural symplectic structure. We also study the geometric properties of this symplectic distribution and define the notion of Hamiltonian systems on \mathcal{M}, thus providing a firm basis to the notion already introduced in [3]. Formally speaking, this distribution of subspaces is integrable and the above defines a Poisson structure on \mathcal{M}. The existence of a Poisson structure on $\left(C_{c}^{\infty}\right)^{*}$ had already been noticed in [31]: their construction is a formal infinite-dimensional analogue of Lie's construction of a canonical Poisson structure on the dual of any finite-dimensional Lie algebra. We review this construction in Section 7 and show that the corresponding 2 -form restricts to ours on \mathcal{M}. In this sense our construction is formally equivalent to the Kirillov-Kostant-Souriau construction of a symplectic structure on the coadjoint orbits of the dual Lie algebra.

2. Topology on \mathcal{M} and a differential calculus of curves

Let \mathcal{M} denote the space of Borel probability measures on \mathbb{R}^{D} with bounded second moment, i.e.

$$
\mathcal{M}:=\left\{\text { Borel measures on } \mathbb{R}^{D}: \mu \geq 0, \int_{\mathbb{R}^{D}} d \mu=1, \int_{\mathbb{R}^{D}}|x|^{2} d \mu<\infty\right\} .
$$

The goal of this section is to show that \mathcal{M} has a natural metric structure and to introduce a differential calculus due to [4] for a certain class of curves in \mathcal{M}. We refer to [4] and [42] for further details.
2.1. The space of distributions. Let C_{c}^{∞} denote the space of compactlysupported smooth functions on \mathbb{R}^{D}. Recall that it admits the structure of a complete locally convex Hausdorff topological vector space, cfr. e.g. [39] Section 6.2. Let $\left(C_{c}^{\infty}\right)^{*}$ denote the topological dual of C_{c}^{∞}, i.e. the vector space of continuous linear maps $C_{c}^{\infty} \rightarrow \mathbb{R}$. We endow $\left(C_{c}^{\infty}\right)^{*}$ with the weak-* topology, defined as the coarsest topology such that, for each $f \in C_{c}^{\infty}$, the induced evaluation maps

$$
\left(C_{c}^{\infty}\right)^{*} \rightarrow \mathbb{R}, \quad \phi \mapsto\langle\phi, f\rangle
$$

are continuous. In terms of sequences this implies that, $\forall f \in C_{c}^{\infty}$, $\phi_{n} \rightarrow \phi \Leftrightarrow\left\langle\phi_{n}, f\right\rangle \rightarrow\langle\phi, f\rangle$. Then $\left(C_{c}^{\infty}\right)^{*}$ is a locally convex Hausdorff topological vector space, cfr. [39] Section 6.16. As such it has a natural differentiable structure.

The following fact may provide a useful context for the material of Section 2.2. We denote by \mathcal{P} the set of all Borel probability measures on \mathbb{R}^{D}. A function f on \mathbb{R}^{D} is said to be of p-growth (for some $p>0)$ if there exist constants $A, B \geq 0$ such that $|f(x)| \leq A+B|x|^{p}$. Let $C_{b}\left(\mathbb{R}^{D}\right)$ denote the set of continuous functions with 0 -growth, i.e. the space of bounded continuous functions. As above we can endow $\left(C_{b}\left(\mathbb{R}^{D}\right)\right)^{*}$ with its natural weak-* topology, defined using test functions in $C_{b}\left(\mathbb{R}^{D}\right)$: this is also known as the narrow topology. Clearly $C_{c}^{\infty} \subset C_{b}\left(\mathbb{R}^{D}\right)$ so there is a chain of inclusions $\mathcal{P} \subset\left(C_{b}\left(\mathbb{R}^{D}\right)\right)^{*} \subset\left(C_{c}^{\infty}\right)^{*}$. The set \mathcal{P} thus inherits two natural topologies. It is well known, cfr. [4] Remarks 5.1.1 and 5.1.6, that the corresponding two notions of convergence of sequences coincide, but that the stronger topology induced from $\left(C_{b}\left(\mathbb{R}^{D}\right)\right)^{*}$ is more interesting in that it is metrizable.
2.2. The topology on \mathcal{M}. Let $C_{2}\left(\mathbb{R}^{D}\right)$ denote the set of continuous functions with 2-growth, as in Section 2.1. We can endow $\left(C_{2}\left(\mathbb{R}^{D}\right)\right)^{*}$ with its natural weak-* topology, defined using test functions in $C_{2}\left(\mathbb{R}^{D}\right)$. As in Section 2.1 there is a chain of inclusions $\mathcal{M} \subset\left(C_{2}\left(\mathbb{R}^{D}\right)\right)^{*} \subset$ $\left(C_{c}^{\infty}\right)^{*}$. We endow \mathcal{M} with the topology induced from $\left.C_{2}\left(\mathbb{R}^{D}\right)\right)^{*}$. Notice that \mathcal{M} is a convex affine subset of $\left.C_{2}\left(\mathbb{R}^{D}\right)\right)^{*}$. In particular it is
contractible, so for $k \geq 1$ all its homology groups H_{k} and cohomology groups H^{k} vanish. As in Section 2.1, it turns out that this topology is metrizable. A compatible metric can be defined as follows.

Definition 2.1. Let $\mu, \nu \in \mathcal{M}$. Consider

$$
\begin{equation*}
W_{2}(\mu, \nu):=\left(\inf _{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}|x-y|^{2} d \gamma(x, y)\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

Here, $\Gamma(\mu, \nu)$ denotes the set of Borel measures γ on $\mathbb{R}^{D} \times \mathbb{R}^{D}$ which have μ and ν as marginals, i.e. satisfying $\pi_{1 \#}(\gamma)=\mu$ and $\pi_{2 \#}(\gamma)=\nu$ where π_{1} and π_{2} denote the standard projections $\mathbb{R}^{D} \times \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$.

Equation 2.1 defines a distance on \mathcal{M}. It is known that the infimum in the right hand side of Equation 2.1 is always achieved. We will denote by $\Gamma_{o}(\mu, \nu)$ the set of γ which minimize this expression.

It can be shown that $\left(\mathcal{M}, W_{2}\right)$ is a separable complete metric space, cfr. e.g. [4] Proposition 7.1.5. It is an important result from MongeKantorovich theory that
$W_{2}^{2}(\mu, \nu)=\sup _{u, v \in C\left(\mathbb{R}^{D}\right)}\left\{\int_{\mathbb{R}^{D}} u d \mu+\int_{\mathbb{R}^{D}} v d \nu: u(x)+v(y) \leq|x-y|^{2} \forall x, y \in \mathbb{R}^{D}\right\}$.
Recall that μ is absolutely continuous with respect to Lebesgue measure \mathcal{L}^{D}, written $\mu \ll \mathcal{L}^{D}$, if it is of the form $\mu=\rho(x) \mathcal{L}^{D}$ for some function $\rho \in L^{1}\left(\mathbb{R}^{D}\right)$. In this case for any $\nu \in \mathcal{M}$ there exists a unique map $T: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ such that $T_{\#} \mu=\nu$ and

$$
\begin{equation*}
W_{2}^{2}(\mu, \nu)=\int_{\mathbb{R}^{D}}|x-T(x)|^{2} d \mu(x) \tag{2.3}
\end{equation*}
$$

cfr. e.g. [4] or [18]. One refers to T as the optimal map that pushes μ forward to ν.

Example 2.2. Given $x \in \mathbb{R}^{D}$, let δ_{x} denote the corresponding Dirac measure on \mathbb{R}^{D}. Consider the set of such measures: this is a closed subset of \mathcal{M} isometric to \mathbb{R}^{D}. More generally, let $a_{i}(i=1, \ldots, n)$ be a fixed collection of distinct positive numbers such that $\sum a_{i}=1$. Then the set of measures of the form $\sum a_{i} \delta_{x_{i}}$ constitutes a closed subset of \mathcal{M}, homeomorphic to $\mathbb{R}^{n D}$.

If $a_{i} \equiv 1 / n$ then the set of measures of the form $\mu=\sum 1 / n \delta_{x_{i}}$ can be identified with $\mathbb{R}^{n D}$ quotiented by the set of permutations of n letters. This space is not a manifold in the usual sense; in the simplest case $D=1$ and $n=2$, it is homeomorphic to a closed half plane, which is a manifold with boundary.

Example 2.3. The subset of absolutely continuous measures in \mathcal{M} is neither open nor closed in \mathcal{M}. Indeed, it does not intersect the sets of Dirac measures seen in Example 2.2. The union of these sets constitutes a dense subset of \mathcal{M}. Furthermore if we define $T^{r}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ by $T^{r}(x)=r x$ and fix an absolutely continuous measure $\mu \in \mathcal{M}$ then $T_{\#}^{r} \mu$ converges to the Dirac mass at the origin.
2.3. Tangent spaces and the divergence operator. Let \mathcal{X}_{c} denote the space of compactly-supported smooth vector fields on \mathbb{R}^{D}. Let $\nabla C_{c}^{\infty} \subseteq \mathcal{X}_{c}$ denote the set of all ∇f, for $f \in C_{c}^{\infty}$. For $\mu \in \mathcal{M}$ let $L^{2}(\mu)$ denote the set of Borel maps $X: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ such that $\|X\|_{\mu}^{2}:=$ $\int_{\mathbb{R}^{D}}|X|^{2} d \mu$ is finite. Recall that $L^{2}(\mu)$ is a Hilbert space with the Euclidean inner product

$$
\begin{equation*}
\hat{G}_{\mu}(X, Y):=\int_{\mathbb{R}^{D}}\langle X, Y\rangle d \mu . \tag{2.4}
\end{equation*}
$$

Remark 2.4. If $\mu=\rho \mathcal{L}^{D}$ for some $\rho: \mathbb{R}^{d} \rightarrow(0, \infty)$ such that $\int \rho d x=1$ then the natural map $\mathcal{X}_{c} \rightarrow L^{2}(\mu)$ is injective. But in general it is not: for example if μ is the Dirac mass at x then two vector fields X, Y will be identified as soon as $X(x)=Y(x)$. However, the image of this map is always dense in $L^{2}(\mu)$.

In [4] Section 8.4, a "tangent space" is defined for each $\mu \in \mathcal{M}$ as follows.

Definition 2.5. Given $\mu \in \mathcal{M}$, let $T_{\mu} \mathcal{M}$ denote the closure of ∇C_{c}^{∞} in $L^{2}(\mu)$. We call it the tangent space of \mathcal{M} at μ. The tangent bundle $T \mathcal{M}$ is defined as the disjoint union of all $T_{\mu} \mathcal{M}$.

Definition 2.6. Given $\mu \in \mathcal{M}$ we define the divergence operator

$$
\operatorname{div}_{\mu}: \mathcal{X}_{c} \rightarrow\left(C_{c}^{\infty}\right)^{*}, \quad\left\langle\operatorname{div}_{\mu}(X), f\right\rangle:=-\int_{\mathbb{R}^{D}} d f(X) d \mu
$$

Notice that the divergence operator is linear and that $\left\langle\operatorname{div}_{\mu}(X), f\right\rangle \leq$ $\|\nabla f\|_{\mu}\|X\|_{\mu}$. This proves that the operator div_{μ} extends to $L^{2}(\mu)$ by continuity; we will continue to use the same notation for the extended operator, so that $\operatorname{Ker}\left(d i v_{\mu}\right)$ is now a closed subspace of $L^{2}(\mu)$.

It follows from [4] Lemma 8.4.2 that, given any $\mu \in \mathcal{M}$, there is an orthogonal decomposition

$$
\begin{equation*}
L^{2}(\mu)=\overline{\nabla C_{c}^{\infty}}{ }^{\mu} \oplus \operatorname{Ker}\left(\operatorname{div}_{\mu}\right) . \tag{2.5}
\end{equation*}
$$

We will denote by $\pi_{\mu}: L^{2}(\mu) \rightarrow{\overline{\nabla C_{c}^{\infty}}}^{\mu}$ the corresponding projection. Notice that each tangent space has a natural Hilbert space structure G_{μ}, obtained by restriction of \hat{G}_{μ} to ${\overline{\nabla C_{c}^{\infty}}}^{\mu}$.

Remark 2.7. Decomposition 2.5 shows that $T_{\mu} \mathcal{M}$ can also be identified with the quotient space $L^{2}(\mu) / \operatorname{Ker}\left(d i v_{\mu}\right)$: the map π_{μ} provides a Hilbert space isomorphism between these two spaces.
Example 2.8. Suppose that x_{1}, \cdots, x_{n} are points in \mathbb{R}^{D} and $\mu=$ $\sum_{i=1}^{n} 1 / n \delta_{x_{i}}$. Fix $\xi \in L^{2}(\mu)$. Set $4 r:=\min _{x_{i} \neq x_{j}}\left|x_{i}-x_{j}\right|$ and define

$$
\varphi(x)=\left\{\begin{array}{rll}
\left\langle x, \xi\left(x_{i}\right)\right\rangle & \text { if } & x \in B_{2 r}\left(x_{i}\right) \quad i=1, \cdots, n \tag{2.6}\\
0 & \text { if } & x \notin \cup_{i=1}^{n} B_{2 r}\left(x_{i}\right) .
\end{array}\right.
$$

Let $\eta \in C_{c}^{\infty}$ be an even function such that $\int_{\mathbb{R}^{D}} \eta d x=1, \eta \geq 0$ and η is supported in the closure of $B_{r}(0)$. Then $\bar{\varphi}:=\eta * \varphi \in C_{c}^{\infty}$ and $\nabla \bar{\varphi}$ coincides with ξ on $\cup_{i=1}^{n} B_{r}\left(x_{i}\right)$. Consequently, $L^{2}(\mu)=T_{\mu} \mathcal{M}$ and $\operatorname{Ker}\left(d i v_{\mu}\right)=\{0\}$. In particular if the points x_{i} are distinct then $L^{2}(\mu)$ can be identified with $\mathbb{R}^{n D}$. If on the other hand all the points coincide, i.e. $x_{i} \equiv x$, then $\mu=\delta_{x}$ and $L^{2}(\mu) \simeq \mathbb{R}^{D}$.

Consider for example the simplest case $D=1, n=2$. As seen in Example 2.2 the corresponding space of Dirac measures is homeomorphic to a closed half plane. We now see that at any interior point, corresponding to $x_{1} \neq x_{2}$, the tangent space is \mathbb{R}^{2}. At any boundary point, corresponding to $x_{1}=x_{2}$, the tangent space is \mathbb{R}. One should compare this with the usual differential-geometric definition of tangent planes on a manifold with boundary, cfr. e.g. [20]: in that case, the tangent plane at a boundary point would be \mathbb{R}^{2}. We will come back to this in Section 3.2.
Remark 2.9. Decomposition 2.5 extends the standard orthogonal Hodge decomposition of a smooth L^{2} vector field X on \mathbb{R}^{D} :

$$
X=\nabla u+X^{\prime}
$$

where u is defined as the unique smooth solution in $W^{1,2}$ of $\Delta u=$ $\operatorname{div}(X)$ and $X^{\prime}:=X-\nabla u$.

In particular, Decomposition 2.5 shows that $\overline{\nabla C_{c}^{\infty}}{ }^{\mu} \cap \operatorname{Ker}\left(d i v_{\mu}\right)=$ $\{0\}$. The analogous statement with respect to the measure \mathcal{L}^{D} is that the only harmonic function on \mathbb{R}^{D} in $W^{1,2}$ is the function $u \equiv 0$.
2.4. Analytic justification for the tangent spaces. Following [4] we now provide an analytic justification for the above definition of tangent spaces for \mathcal{M}. A more geometric justification, using group actions, will be given in Section 3.2.

Suppose we are given a curve $\sigma:(a, b) \rightarrow \mathcal{M}$ and a Borel vector field $X:(a, b) \times \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ such that $X_{t} \in L^{2}\left(\sigma_{t}\right)$. Here, we have written σ_{t} in place of $\sigma(t)$ and X_{t} in place of $X(t)$. We will write

$$
\begin{equation*}
\frac{\partial \sigma}{\partial t}+d i v_{\sigma}(X)=0 \tag{2.7}
\end{equation*}
$$

if the following condition holds: for all $\phi \in C_{c}^{\infty}\left((a, b) \times \mathbb{R}^{D}\right)$,

$$
\begin{equation*}
\int_{a}^{b} \int_{\mathbb{R}^{D}}\left(\frac{\partial \phi}{\partial t}+\nabla \phi\left(X_{t}\right)\right) d \sigma_{t} d t=0 \tag{2.8}
\end{equation*}
$$

i.e. if Equation 2.7 holds in the sense of distributions. Given σ_{t}, notice that if Equation 2.7 holds for X then it holds for $X+W$, for any Borel $\operatorname{map} W:(a, b) \times \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ such that $W_{t} \in \operatorname{Ker}\left(d i v_{\sigma_{t}}\right)$.

The following definition and remark can be found in [4] Chapter 1.
Definition 2.10. Let (\mathbb{S}, dist) be a metric space. A curve $t \in(a, b) \mapsto$ $\sigma_{t} \in \mathbb{S}$ is 2-absolutely continuous if there exists $\beta \in L^{2}(a, b)$ such that $\operatorname{dist}\left(\sigma_{t}, \sigma_{s}\right) \leq \int_{s}^{t} \beta(\tau) d \tau$ for all $a<s<t<b$. We then write $\sigma \in$ $A C_{2}(a, b ; \mathbb{S})$. For such curves the limit $\left|\sigma^{\prime}\right|(t):=\lim _{s \rightarrow t} \operatorname{dist}\left(\sigma_{t}, \sigma_{s}\right) / \mid t-$ $s \mid$ exists for \mathcal{L}^{1}-almost every $t \in(a, b)$. We call this limit the metric derivative of σ at t. It satisfies $\left|\sigma^{\prime}\right| \leq \beta \mathcal{L}^{1}$-almost everywhere.
Remark 2.11. (i) If $\sigma \in A C_{2}(a, b ; \mathbb{S})$ then $\left|\sigma^{\prime}\right| \in L^{2}(a, b)$ and $\operatorname{dist}\left(\sigma_{s}, \sigma_{t}\right) \leq$ $\int_{s}^{t}\left|\sigma^{\prime}\right|(\tau) d \tau$ for $a<s<t<b$. We can apply Hölder's inequality to conclude that $\operatorname{dist}^{2}\left(\sigma_{s}, \sigma_{t}\right) \leq c|t-s|$ where $c=\int_{a}^{b}\left|\sigma^{\prime}\right|^{2}(\tau) d \tau$.
(ii) It follows from (i) that $\left\{\sigma_{t} \mid t \in[a, b]\right\}$ is a compact set, so it is bounded. For instance, given $x \in \mathbb{S}$, the triangle inequality proves that $\operatorname{dist}\left(\sigma_{s}, x\right) \leq \sqrt{c|s-a|}+\operatorname{dist}\left(\sigma_{a}, x\right)$.

We now recall [4] Theorem 8.3.1. It shows that the definition of tangent space given above is flexible enough to include the velocities of any "good" curve in \mathcal{M}.

Proposition 2.12. If $\sigma \in A C_{2}(a, b ; \mathcal{M})$ then there exists a Borel map $v:(a, b) \times \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ such that $\frac{\partial \sigma}{\partial t}+\operatorname{div}_{\sigma}(v)=0$ and $v_{t} \in L^{2}\left(\sigma_{t}\right)$ for \mathcal{L}^{1}-almost every $t \in(a, b)$. We call v a velocity for σ. If w is another velocity for σ then the projections $\pi_{\sigma_{t}}\left(v_{t}\right), \pi_{\sigma_{t}}\left(w_{t}\right)$ coincide for \mathcal{L}^{1}-almost every $t \in(a, b)$. One can choose v such that $v_{t} \in{\overline{\nabla C_{c}^{\infty}}}^{\sigma_{t}}$ and $\left\|v_{t}\right\|_{\sigma_{t}}=\left|\sigma^{\prime}\right|(t)$ for \mathcal{L}^{1}-almost every $t \in(a, b)$. In that case, for \mathcal{L}^{1}-almost every $t \in(a, b), v_{t}$ is uniquely determined. We denote this velocity $\dot{\sigma}$ and refer to it as the velocity of minimal norm, since if w_{t} is any other velocity associated to σ then $\left\|\dot{\sigma}_{t}\right\|_{\sigma_{t}} \leq\left\|w_{t}\right\|_{\sigma_{t}}$ for \mathcal{L}^{1}-almost every $t \in(a, b)$.

The following remark can be found in [4] Lemma 1.1.4 in a more general context.

Remark 2.13 (Lipschitz reparametrization). Let $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and v be a velocity associated to σ. Fix $\alpha>0$ and define $S(t)=\int_{a}^{t}(\alpha+$
$\left.\left\|v_{\tau}\right\|_{\sigma_{\tau}}\right) d \tau$. Then $S:[a, b] \rightarrow[0, L]$ is absolutely continuous and increasing, with $L=S(b)$. The inverse of S is a function whose Lipschitz constant is less than or equal to $1 / \alpha$. Define

$$
\bar{\sigma}_{s}:=\sigma_{S^{-1}(s)}, \quad \bar{v}_{s}:=\dot{S}^{-1}(s) v_{S^{-1}(s)} .
$$

One can check that $\bar{\sigma} \in A C_{2}(0, L ; \mathcal{M})$ and that \bar{v} is a velocity associated to $\bar{\sigma}$. Fix $t \in(a, b)$ and set $s:=S(t)$. Then $v_{t}=\dot{S}(t) \bar{v}_{S(t)}$ and $\left\|\bar{v}_{s}\right\|_{\sigma_{s}}=\frac{\left\|v_{t}\right\| \sigma_{t}}{\alpha+\left\|v_{t}\right\| \sigma_{t}}<1$.

3. The calculus of curves, Revisited

The goal of this section is to revisit the material of Section 2 from a more geometric viewpoint. Many of the results presented here are purely formal, but they may provide some insight into the structure of \mathcal{M}. They also provide useful intuition into the more rigorous results contained in the sections which follow. We refer to Appendix A for notation and terminology.
3.1. Embedding the geometry of \mathbb{R}^{D} into \mathcal{M}. We have already seen in Example 2.2 that Dirac measures provide a continuous embedding of \mathbb{R}^{D} into \mathcal{M}. Many aspects of the standard geometry of \mathbb{R}^{D} can be recovered inside \mathcal{M}, and various techniques which we will be using for \mathcal{M} can be seen as an extension of standard techniques used for \mathbb{R}^{D}.

One example of this is provided by Example 2.8, which shows that the standard notion of tangent space on \mathbb{R}^{D} coincides with the notion of tangent spaces on \mathcal{M} introduced by [4].

Another simple example is as follows. Consider the space of volume forms on \mathbb{R}^{D}, i.e. the smooth never-vanishing D-forms. Under appropriate normalization and decay conditions, these define a subset of \mathcal{M}. Given a vector field $X \in \mathcal{X}_{c}$ and a volume form α, there is a standard geometric definition of $\operatorname{div}_{\alpha}(X)$ in terms of Lie derivatives: namely, $\mathcal{L}_{X} \alpha$ is also a D -form so we can $\operatorname{define~}^{\operatorname{div}} v_{\alpha}(X)$ to be the unique smooth function on M such that

$$
\begin{equation*}
\operatorname{div}_{\alpha}(X) \alpha=\mathcal{L}_{X} \alpha \tag{3.1}
\end{equation*}
$$

In particular, it is clear from this definition and Lemma A. 3 that $X \in$ $\operatorname{Ker}\left(d i v_{\alpha}\right)$ iff the corresponding flow preserves the volume form.

Cartan's formula together with Green's theorem for \mathbb{R}^{D} shows that $d i v_{\alpha}$ is the negative formal adjoint of d with respect to α, i.e.

$$
\int_{M} f d i v_{\alpha}(X) \alpha=-\int_{M} d f(X) \alpha, \quad \forall f \in C_{c}^{\infty}(M)
$$

In particular, $\operatorname{div}_{\alpha}(X) \alpha$ satisfies Equation 2.6. In this sense Equation 2.6 extends the standard geometric definition of divergence to the whole of \mathcal{M}.
3.2. The intrinsic geometry of \mathcal{M}. It is appealing to think that, in some weak sense, the results of Section 2.4 can be viewed as a way of using the Wasserstein distance to describe an "intrinsic" differentiable structure on \mathcal{M}. This structure can be alternatively viewed as follows.

Let $\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ be a Borel map and $\mu \in \mathcal{M}$. Recall that the pushforward measure $\phi_{\#} \mu \in \mathcal{M}$ is defined by setting $\phi_{\#} \mu(A):=\mu\left(\phi^{-1}(A)\right)$, for any open subset $A \subseteq \mathbb{R}^{D}$. Let $\operatorname{Diff}\left(\mathbb{R}^{D}\right)$ denote the $I d$-component of the Lie group of diffeomorphisms of \mathbb{R}^{D} with compact support, cfr. Section A.3. One can check that the induced map

$$
\begin{equation*}
\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) \times \mathcal{M} \rightarrow \mathcal{M}, \quad(\phi, \mu) \mapsto \phi_{\#} \mu \tag{3.2}
\end{equation*}
$$

is continuous. Choose any $X \in \mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$ and let ϕ_{t} denote the flow of X. Given any $\mu \in \mathcal{M}$, it is simple to verify that $\mu_{t}:=\phi_{t \#} \mu$ is a path in \mathcal{M} with velocity X in the sense of Proposition 2.12. Notice that in this case the velocity is defined for all t, rather than only for almost every t. In particular it makes sense to say that the velocity for $t=0$ is $\pi_{\mu}(X) \in T_{\mu} \mathcal{M}$. The map

$$
\mathcal{M} \rightarrow T \mathcal{M}, \quad \mu \rightarrow \pi_{\mu}(X) \in T_{\mu} \mathcal{M}
$$

defines a fundamental vector field associated to X in the sense of Section A.2. In this sense the map of Equation 3.2 defines a left action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ on \mathcal{M} with properties analogous to those of the actions of Section A.2.

According to Section A. 2 the orbit and stabilizer of any fixed $\mu \in \mathcal{M}$ are

$$
\begin{aligned}
\mathcal{O}_{\mu}:= & \left\{\nu \in \mathcal{M}: \nu=\phi_{\#} \mu, \text { for some } \phi \in \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)\right\}, \\
& \operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right):=\left\{\phi \in \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right): \phi_{\#} \mu=\mu\right\} .
\end{aligned}
$$

Formally, $\operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$ is a Lie subgroup of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ and $\operatorname{Ker}\left(d i v_{\mu}\right)$ is its Lie algebra. The map

$$
j: \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) / \operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right) \rightarrow \mathcal{O}_{\mu}, \quad[\phi] \mapsto \phi_{\#} \mu
$$

defines a $1: 1$ relationship between the quotient space and the orbit of μ. Lemma A. 15 suggests that \mathcal{O}_{μ} is a smooth submanifold of the space \mathcal{M} and that the isomorphism $\nabla j: \mathcal{X}_{c} / \operatorname{Ker}\left(\operatorname{div}_{\mu}\right) \rightarrow T_{\mu} \mathcal{O}_{\mu}$ coincides with the map determined by the construction of fundamental vector fields. Notice that, up to L_{μ}^{2}-closure, the space $\mathcal{X}_{c} / \operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$ is exactly the space introduced in Definition 2.5. This indicates that the tangent spaces of Section 2.3 should be thought of as "tangent" not to the
whole of \mathcal{M}, but only to the leaves of the foliation induced by the action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$. In other words \mathcal{M} should be thought of as a stratified manifold, i.e. as a topological space with a foliation and a differentiable structure defined only on each leaf of the foliation. This point of view is purely formal but it corresponds exactly to the situation already described for Dirac measures, cfr. Example 2.8.

Recall from Proposition 2.12 the relationship between the class of 2absolutely continuous curves and these tangent spaces. This result can be viewed as the expression of a strong compatibility between two natural but a priori distinct structures on \mathcal{M} : the Wasserstein topology and the group action.
Remark 3.1. The claim that the Lie algebra of $\operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$ is $\operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$ can be supported in various ways. For example, assume ϕ_{t} is a curve of diffeomorphisms in $\operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$ and that X_{t} satisfies Equation A.8. The following calculation is the weak analogue of Lemma A.3. It shows that $X_{t} \in \operatorname{Ker}\left(d i v_{\mu}\right)$:

$$
\begin{aligned}
\int d f\left(X_{t}\right) d \mu & =\int d f\left(X_{t}\right) d\left(\phi_{t \#} \mu\right)=\int d f_{\mid \phi_{t}}\left(X_{t \mid \phi_{t}}\right) d \mu \\
& =\int d / d t\left(f \circ \phi_{t}\right) d \mu=d / d t \int f \circ \phi_{t} d \mu \\
& =d / d t \int f d\left(\phi_{t \#} \mu\right)=d / d t \int f d \mu=0 .
\end{aligned}
$$

It is also simple to check that $\operatorname{Ker}\left(d i v_{\mu}\right)$ is a Lie subalgebra of $\mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$, i.e. if $X, Y \in \operatorname{Ker}\left(d i v_{\mu}\right)$ then $[X, Y] \in \operatorname{Ker}\left(d i v_{\mu}\right)$. To show this, let $f \in C_{c}^{\infty}$. Then:

$$
\begin{aligned}
\left\langle\operatorname{div}_{\mu}[X, Y], f\right\rangle & =-\int_{\mathbb{R}^{D}} d f([X, Y]) d \mu \\
& =-\int_{\mathbb{R}^{d}} d g(X) d \mu+\int_{\mathbb{R}^{d}} d h(Y) d \mu \\
& =\left\langle\operatorname{div}_{\mu}(X), g\right\rangle-\left\langle\operatorname{div}_{\mu}(Y), h\right\rangle=0
\end{aligned}
$$

where $g:=d f(Y)$ and $h:=d f(X)$.
Finally, assume μ is a smooth volume form on a compact manifold M. In this situation Hamilton [21] proved that $\operatorname{Diff}_{\mu}(M)$ is a Fréchet Lie subgroup of $\operatorname{Diff}(M)$ and that the Lie algebra of $\operatorname{Diff}_{\mu}(M)$ is the space of vector fields $X \in \mathcal{X}(M)$ satisfying the condition $\mathcal{L}_{X} \mu=0$. As seen in Section 3.1 this space coincides with $\operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$.
Remark 3.2. Recall that, given an appropriate curve μ_{t} in \mathcal{M}, Proposition 2.12 defines tangent vectors only \mathcal{L}^{1}-almost everywhere with respect to t. For different reasons a similar issue should arise also for
curves in a stratified manifold: tangent vectors should exist only while moving within each leaf but not while crossing from one leaf to another.
3.3. Embedding the geometry of \mathcal{M} into $\left(C_{c}^{\infty}\right)^{*}$. We can also view \mathcal{M} as a subspace of $\left(C_{c}^{\infty}\right)^{*}$. It is then interesting to compare the corresponding geometries, as follows.

Consider the natural left action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ on \mathbb{R}^{D} given by $\phi \cdot x:=$ $\phi(x)$. As in Section A. 2 this induces a left action on the spaces of forms Λ^{k}, and in particular on the space of functions $C_{c}^{\infty}=\Lambda^{0}$ as follows:

$$
\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) \times C_{c}^{\infty} \rightarrow C_{c}^{\infty}, \quad \phi \cdot f:=\left(\phi^{-1}\right)^{*} f=f \circ \phi^{-1} .
$$

By duality there is an induced left action on the space of distributions given by
$\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) \times\left(C_{c}^{\infty}\right)^{*} \rightarrow\left(C_{c}^{\infty}\right)^{*}, \quad\langle(\phi \cdot \mu), f\rangle:=\left\langle\mu,\left(\phi^{-1} \cdot f\right)\right\rangle=\langle\mu,(f \circ \phi)\rangle$.
Notice that we have introduced inverses to ensure that these are left actions, cfr. Remark A.9. It is clear that this extends the action already defined in Section 3.2 on the subset $\mathcal{M} \subset\left(C_{c}^{\infty}\right)^{*}$. In other words, the natural immersion $i: \mathcal{M} \rightarrow\left(C_{c}^{\infty}\right)^{*}$ is equivariant with respect to the action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$, i.e. $i\left(\phi_{\#} \mu\right)=\phi \cdot i(\mu)$.

As mentioned in Section 2.1, $\left(C_{c}^{\infty}\right)^{*}$ has a natural differentiable structure. In particular it has well-defined tangent spaces $T_{\mu}\left(C_{c}^{\infty}\right)^{*}=$ $\left(C_{c}^{\infty}\right)^{*}$. For each $\mu \in \mathcal{M}$, using the notation of Section 3.2, composition gives an immersion

$$
i \circ j: \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) / \operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right) \rightarrow \mathcal{O}_{\mu} \rightarrow\left(C_{c}^{\infty}\right)^{*}
$$

This induces an injection between the corresponding tangent spaces

$$
\nabla(i \circ j): \mathcal{X}_{c} / \operatorname{Ker}\left(d i v_{\mu}\right) \rightarrow T_{\mu}\left(C_{c}^{\infty}\right)^{*}
$$

Notice that, using the equivariance of i,

$$
\begin{aligned}
\langle\nabla(i \circ j)(X), f\rangle & =\left\langle\nabla i\left(d / d t\left(\phi_{t \#} \mu\right)_{\mid t=0}\right), f\right\rangle=\left\langle d / d t\left(i\left(\phi_{t \#} \mu\right)\right)_{\mid t=0}, f\right\rangle \\
& =\left\langle d / d t\left(\phi_{t} \cdot \mu\right)_{\mid t=0}, f\right\rangle=d / d t\left\langle\mu, f \circ \phi_{t}\right\rangle_{\mid t=0} \\
& =\left\langle\mu, d / d t\left(f \circ \phi_{t}\right)_{\mid t=0}\right\rangle=\langle\mu, d f(X)\rangle \\
& =-\left\langle d i v_{\mu}(X), f\right\rangle .
\end{aligned}
$$

In other words, the negative divergence operator can be interpreted as the natural identification between $T_{\mu} \mathcal{M}$ and the appropriate subspace of $\left(C_{c}^{\infty}\right)^{*}$.

More generally, we can compare the calculus of curves in \mathcal{M} with the calculus of the corresponding curves in $\left(C_{c}^{\infty}\right)^{*}$. Given any sufficiently regular curve of distributions $t \rightarrow \mu_{t} \in\left(C_{c}^{\infty}\right)^{*}$, we can define tangent
vectors $\tau_{t}:=\lim _{h \rightarrow 0} \frac{\mu_{t+h}-\mu_{t}}{h} \in T_{\mu_{t}}\left(C_{c}^{\infty}\right)^{*}$. Assume that μ_{t} is strongly continuous with respect to t, in the sense that the evaluation map

$$
(a, b) \times C_{c}^{\infty} \rightarrow \mathbb{R}, \quad\left(\mu_{t}, f\right) \mapsto\left\langle\mu_{t}, f\right\rangle
$$

is continuous. Notice that $\mu=\mu_{t}$ defines a distribution on the product space $(a, b) \times \mathbb{R}^{D}: \forall f=f_{t}(x) \in C_{c}^{\infty}\left((a, b) \times \mathbb{R}^{D}\right)$,

$$
\langle\mu, f\rangle:=\int_{a}^{b}\left\langle\mu_{t}, f_{t}\right\rangle d t
$$

One can check that $\frac{d}{d t}\left\langle\mu_{t}, f_{t}\right\rangle=\left\langle\tau_{t}, f_{t}\right\rangle+\left\langle\mu_{t}, \frac{\partial f_{t}}{\partial t}\right\rangle$, so

$$
\begin{equation*}
\int_{a}^{b}\left\langle\mu_{t}, \frac{\partial f_{t}}{\partial t}\right\rangle+\left\langle\tau_{t}, f_{t}\right\rangle d t=0 \tag{3.3}
\end{equation*}
$$

Equation 3.3 shows that if $\mu_{t} \in \mathcal{M}$ and $\tau_{t}=-\operatorname{div}_{\mu_{t}}\left(X_{t}\right)$ then μ_{t} satisfies Equation 2.8. In other words, the defining equation for the calculus on \mathcal{M}, Equation 2.7, is the natural weak analogue of the statement $\lim _{h \rightarrow 0} \frac{\mu_{t+h}-\mu_{t}}{h}=-\operatorname{div}_{\mu_{t}}\left(X_{t}\right)$.

Roughly speaking, the content of Proposition 2.12 is that if $\mu_{t} \in \mathcal{M}$ is 2-absolutely continuous then, for almost every t, τ_{t} exists and can be written as $-d i v_{\mu_{t}}\left(X_{t}\right)$ for some t-dependent vector field X_{t} on \mathbb{R}^{D}.
Remark 3.3. One should think of Equation 2.7, i.e. $d / d t\left(\mu_{t}\right)=-\operatorname{div}_{\mu_{t}}\left(X_{t}\right)$, as an ODE on the submanifold $\mathcal{M} \subset\left(C_{c}^{\infty}\right)^{*}$ rather than on the abstract manifold \mathcal{M}, in the sense that the right hand side is an element of $T_{\mu_{t}}\left(C_{c}^{\infty}\right)^{*}$ rather than an element of $T_{\mu_{t}} \mathcal{M}$. Using $\nabla(i \circ j)^{-1}$ we can rewrite this equation as an ODE on the abstract manifold \mathcal{M}, i.e. $d / d t\left(\mu_{t}\right)=\pi_{\mu_{t}}(X)$.

4. Tangent and cotangent bundles

We now define some further elements of calculus on \mathcal{M}. As opposed to Section 3, the definitions and statements made here are completely rigorous. We will often refer back to the ideas of Section 3, however, to explain the geometric intuition underlying this theory.
4.1. Push-forward operations on \mathcal{M} and $T \mathcal{M}$. The following result concerns the push-forward operation on \mathcal{M}.
Lemma 4.1. If $\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ is a Lipschitz map with Lipschitz constant Lip ϕ then $\phi_{\#}: \mathcal{M} \rightarrow \mathcal{M}$ is also a Lipschitz map with the same Lipschitz constant.
Proof: Let $\mu, \nu \in \mathcal{M}$. Note that if $u(x)+v(y) \leq|x-y|^{2}$ for all $x, y \in \mathbb{R}^{D}$ then

$$
u \circ \phi(a)+v \circ \phi(b) \leq|\phi(a)-\phi(b)|^{2} \leq(\text { Lip } \phi)^{2}|a-b|^{2} .
$$

This, together with Equation 2.2 yields
$\int_{\mathbb{R}^{D}} u d \phi_{\#} \mu+\int_{\mathbb{R}^{D}} v d \phi_{\#} \nu=\int_{\mathbb{R}^{D}} u \circ \phi d \mu+\int_{\mathbb{R}^{D}} v \circ \phi d \nu \leq(\text { Lip } \phi)^{2} W_{2}^{2}(\mu, \nu)$.
We maximize the expression at the left handside of Equation 4.1 over the set of pairs (u, v) such that $u(x)+v(y) \leq|x-y|^{2}$ for all $x, y \in \mathbb{R}^{D}$. Then we use again Equation 2.2 to conclude the proof.

QED.
The next results concern the lifted action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ on $T \mathcal{M}$ in the sense of Section A.2.

Lemma 4.2. For any $\mu \in \mathcal{M}$ and $\phi \in \operatorname{Diff} f_{c}\left(\mathbb{R}^{D}\right)$, the map ϕ_{*} : $\mathcal{X}_{c}\left(\mathbb{R}^{D}\right) \rightarrow \mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$ has a unique continuous extension $\phi_{*}: L^{2}(\mu) \rightarrow$ $L^{2}\left(\phi_{\#} \mu\right)$. Furthermore $\phi_{*}\left(\operatorname{Ker}\left(\operatorname{div}_{\mu}\right)\right) \leq \operatorname{Ker}\left(\operatorname{div}_{\varphi_{\#} \mu}\right)$. Thus ϕ_{*} induces a continuous map $\phi_{*}: T_{\mu} \mathcal{M} \rightarrow T_{\phi_{\#} \mu} \mathcal{M}$.
Proof: Let $\mu \in \mathcal{M}, \phi \in \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right), f \in C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$ and let $X \in$ $\operatorname{Ker}\left(d i v_{\mu}\right)$. If C_{ϕ} is the L^{∞}-norm of $\nabla \phi$ we have $\left\|\phi_{*} X\right\|_{\phi_{\#} \mu} \leq C_{\phi}\|X\|_{\mu}$. Hence ϕ_{*} admits a unique continuous linear extension. Furthermore

$$
\begin{aligned}
\int_{\mathbb{R}^{D}}\left\langle\nabla f, \varphi_{*} X\right\rangle d \varphi_{\#} \mu & =\int_{\mathbb{R}^{D}}\left\langle\nabla f \circ \varphi, \varphi_{*} X \circ \varphi\right\rangle d \mu \\
& =\int_{\mathbb{R}^{D}}\langle\nabla f \circ \varphi, \nabla \varphi X\rangle d \mu \\
& =\int_{\mathbb{R}^{D}}\left\langle(\nabla \varphi)^{T} \nabla f \circ \varphi, X\right\rangle d \mu \\
& =\int_{\mathbb{R}^{D}}\langle\nabla[f \circ \varphi], X\rangle d \mu=0 .
\end{aligned}
$$

QED.

Remark 4.3. Recall from Lemma A. 20 that $\phi_{*}=A d_{\phi}$ on $\mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$. Lemma 4.2 is then the analogue of Remark A.16.

Lemma 4.4. Let $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and let v be a velocity for σ. Let $\varphi \in \operatorname{Diff} c\left(\mathbb{R}^{D}\right)$. Then $t \rightarrow \varphi_{\#}\left(\sigma_{t}\right) \in A C_{2}(a, b ; \mathcal{M})$ and $\varphi_{*} v$ is a velocity for $\varphi_{\#} \sigma$.

Proof: If $a<s<t<b$, by Remark 4.1,

$$
W_{2}\left(\varphi_{\#} \sigma_{t}, \varphi_{\#} \sigma_{s}\right) \leq(\operatorname{Lip} \varphi) W_{2}\left(\sigma_{t}, \sigma_{s}\right)
$$

Because $\sigma \in A C_{2}(a, b ; \mathcal{M})$ one concludes that $d \varphi_{\#}(\sigma) \in A C_{2}(a, b ; \mathcal{M})$. If $f \in C_{c}^{\infty}\left((a, b) \times \mathbb{R}^{D}\right)$ we have

$$
\begin{aligned}
& \int_{a}^{b} \int_{\mathbb{R}^{D}}\left(\frac{\partial f_{t}}{\partial t}+d f_{t}\left(\phi_{*} v_{t}\right)\right) d\left(\varphi_{\#} \sigma_{t}\right) d t \\
& =\int_{a}^{b} \int_{\mathbb{R}^{D}}\left(\frac{\partial f_{t}}{\partial t} \circ \varphi+\left(d f_{t}\left(\phi_{*} v_{t}\right)\right) \circ \varphi\right) d \sigma_{t} d t \\
& =\int_{a}^{b} \int_{\mathbb{R}^{D}}\left(\frac{\partial(f \circ \varphi)_{t}}{\partial t}+d(f \circ \varphi)_{t}\left(v_{t}\right)\right) d \sigma_{t} d t=0 .
\end{aligned}
$$

To obtain the last equality we have used that $(t, x) \rightarrow f(t, \varphi(x))$ is in $C_{c}^{\infty}\left((a, b) \times \mathbb{R}^{D}\right)$.

QED.
4.2. Differential forms on \mathcal{M}. Recall from Definition 2.5 that the tangent bundle $T \mathcal{M}$ of \mathcal{M} is defined as the union of all spaces $T_{\mu} \mathcal{M}$, for $\mu \in \mathcal{M}$. We now define the pseudo tangent bundle $\mathcal{T} \mathcal{M}$ to be the union of all spaces $L^{2}(\mu)$. Analogously, the union of the dual spaces $T_{\mu}^{*} \mathcal{M}$ defines the cotangent bundle $T^{*} \mathcal{M}$; we define the pseudo cotangent bundle $\mathcal{T}^{*} \mathcal{M}$ to be the union of the dual spaces $L^{2}(\mu)^{*}$.

It is clear from the definitions that we can think of $T \mathcal{M}$ as a subbundle of $\mathcal{T} \mathcal{M}$. Decomposition 2.5 allows us also to define an injection $T^{*} \mathcal{M} \rightarrow \mathcal{T}^{*} \mathcal{M}$ by extending any covector $T_{\mu} \mathcal{M} \rightarrow \mathbb{R}$ to be zero on the complement of $T_{\mu} \mathcal{M}$ in $L^{2}(\mu)$. In this sense we can also think of $T^{*} \mathcal{M}$ as a subbundle of $\mathcal{T}^{*} \mathcal{M}$. The projections π_{μ} from Section 2.3 combine to define a surjection $\pi: \mathcal{T} \mathcal{M} \rightarrow T \mathcal{M}$. Likewise, restriction yields a surjection $\mathcal{T}^{*} \mathcal{M} \rightarrow T^{*} \mathcal{M}$.

Remark 4.5. The above constructions make heavy use of the Hilbert structure on $L^{2}(\mu)$. Following the point of view of Remark 2.7 and Section 3.2, i.e. emphasizing the differential, rather than the Riemannian, structure of \mathcal{M} one could decide to define $T_{\mu} \mathcal{M}$ as $L^{2}(\mu) / \operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$. Then the projections $\pi_{\mu}: L^{2}(\mu) \rightarrow T_{\mu} \mathcal{M}$ would still define by duality an injection $T^{*} \mathcal{M} \rightarrow \mathcal{T}^{*} \mathcal{M}$: this would identify $T^{*} \mathcal{M}$ with the annihilator of $\operatorname{Ker}\left(d i v_{\mu}\right)$ in $L^{2}(\mu)$. However there would be no natural injection $T \mathcal{M} \rightarrow \mathcal{T} \mathcal{M}$ nor any natural surjection $\mathcal{T}^{*} \mathcal{M} \rightarrow T^{*} \mathcal{M}$.
Definition 4.6. A 1 -form on \mathcal{M} is a section of the cotangent bundle $T^{*} \mathcal{M}$, i.e. a collection of maps $\mu \mapsto F_{\mu} \in T_{\mu}^{*} \mathcal{M}$. A pseudo 1 -form is a section of the pseudo cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.

Analogously, a 2 -form on \mathcal{M} is a collection of alternating multilinear maps

$$
\mu \mapsto \Lambda_{\mu}: T_{\mu} \mathcal{M} \times T_{\mu} \mathcal{M} \rightarrow \mathbb{R}
$$

continuous for each μ in the sense that $\left|\Lambda_{\mu}\left(X_{1}, X_{2}\right)\right| \leq c_{\mu}\left\|X_{1}\right\|_{\mu} \cdot\left\|X_{2}\right\|_{\mu}$, for some $c_{\mu} \in \mathbb{R}$. A pseudo 2-form is a collection of continuous alternating multilinear maps

$$
\mu \mapsto \bar{\Lambda}_{\mu}: L^{2}(\mu) \times L^{2}(\mu) \rightarrow \mathbb{R}
$$

For $k=1,2$ we let $\Lambda^{k} \mathcal{M}$ (respectively, $\bar{\Lambda}^{k} \mathcal{M}$) denote the space of k -forms (respectively, pseudo k-forms). We define a 0 -form to be a function $\mathcal{M} \rightarrow \mathbb{R}$.

For $k=1,2$, the continuity condition implies that any k -form is uniquely defined by its values on any dense subset of $T_{\mu} \mathcal{M}$ or $T_{\mu} \mathcal{M} \times$ $T_{\mu} \mathcal{M}$, e.g. on the dense subset defined by smooth gradient vector fields. The analogue is true for pseudo k-forms. Once again, using Decomposition 2.5 yields an injection $\Lambda^{k} \mathcal{M} \rightarrow \bar{\Lambda}^{k} \mathcal{M}$ and, by restriction, a surjection $\bar{\Lambda}^{k} \mathcal{M} \rightarrow \Lambda^{k} \mathcal{M}$. In this sense every pseudo k-form defines a natural k-form.

Since $T_{\mu} \mathcal{M}$ is a Hilbert space, by the Riesz representation theorem every 1-form Λ_{μ} on $T_{\mu} \mathcal{M}$ can be written $\Lambda_{\mu}(Y)=\int_{\mathbb{R}^{D}}\left\langle A_{\mu}, Y\right\rangle d \mu$ for a unique $A_{\mu} \in T_{\mu} \mathcal{M}$ and all $Y \in T_{\mu} \mathcal{M}$. The analogous fact is true also for pseudo 1 -forms.

Remark 4.7. For $k \geq 3$ it is not natural to consider alternating multilinear maps on $L^{2}(\mu)$ which are continuous.

Remark 4.8. It is interesting to understand the geometric content of a pseudo k-form. Formally speaking, restricted to any orbit $\mathcal{O}_{\mu}=$ $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) / \operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$ of the $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ action on \mathcal{M}, a pseudo k-form gives a map $\mathcal{O}_{\mu} \rightarrow \Lambda^{k}\left(\mathcal{X}_{c}\right)$. Pulling this map back to $\operatorname{Diff}\left(\mathbb{R}^{D}\right)$ defines a $\operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$-invariant k-form on $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$, cfr. Section A.2. This implies that a pseudo k -form on \mathcal{M} is equivalent to a family of $\operatorname{Diff} c, \mu\left(\mathbb{R}^{D}\right)$-invariant k-forms on $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ parametrized by the space of orbits $\mathcal{M} / \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$.
Example 4.9. Any $f \in C_{c}^{\infty}$ defines a function on \mathcal{M}, i.e. a 0 -form, as follows:

$$
F(\mu):=\int_{\mathbb{R}^{D}} f d \mu
$$

We will refer to these as the linear functions on \mathcal{M}, in that the natural extension to the space $\left(C_{c}^{\infty}\right)^{*}$ defines a function which is linear with respect to μ.

Any $\bar{A} \in \mathcal{X}_{c}$ defines a pseudo 1 -form on \mathcal{M} as follows:

$$
\bar{\Lambda}_{\mu}(X):=\int_{\mathbb{R}^{D}}\langle\bar{A}, X\rangle d \mu
$$

We will refer to these as the linear pseudo 1-forms. Notice that if $\bar{A}=\nabla f$ for some $f \in C_{c}^{\infty}$ then $\bar{\Lambda}$ is actually a 1-form.

Any bounded field $B=B(x)$ on \mathbb{R}^{D} of $D \times D$ matrices defines a linear pseudo 2-form via

$$
\bar{B}(X, Y):=\int_{\mathbb{R}^{D}} B(X, Y) d \mu
$$

As in Section A.2, the action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ on \mathcal{M} can be lifted to forms and pseudo forms as follows.
Definition 4.10. For $k=1,2$, let $\bar{\Lambda}$ be a pseudo k-form on \mathcal{M}. Then any $\phi \in \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ defines a pull-back k -multilinear map $\phi^{*} \bar{\Lambda}$ on \mathcal{M} as follows:

$$
\left(\phi^{*} \bar{\Lambda}\right)_{\mu}\left(X_{1}, \ldots, X_{k}\right):=\bar{\Lambda}_{\phi_{\# \mu}}\left(\phi_{*} X_{1}, \ldots, \phi_{*} X_{k}\right) .
$$

It is simple to check that $\phi^{*} \bar{\Lambda}$ is indeed continuous in the sense of Definition 4.6 and is thus a pseudo k -form.

It follows from Lemma 4.2 that the push-forward operation preserves Decomposition 2.5. This implies that the pull-back preserves the space of k -forms, i.e. the pull-back of a k -form is a k -form.
Definition 4.11. Let $F: \mathcal{M} \rightarrow \mathbb{R}$ be a function on \mathcal{M}. We say that $\xi \in L^{2}(\mu)$ belongs to the subdifferential $\partial_{\mathbf{\bullet}} F(\mu)$ if

$$
F(\nu) \geq F(\mu)+\sup _{\gamma \in \Gamma_{o}(\mu, \nu)} \iint_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\langle\xi(x), y-x\rangle d \gamma(x, y)+o\left(W_{2}(\mu, \nu)\right),
$$

as $\nu \rightarrow \mu$. If $-\xi \in \partial_{\bullet}(-F)(\mu)$ we say that ξ belongs to the superdifferential $\partial \bullet \neq(\mu)$.

If $\xi \in \partial_{\bullet} F(\mu) \cap \partial \bullet F(\mu)$ then, for any $\gamma \in \Gamma_{o}(\mu, \nu)$,

$$
\begin{equation*}
F(\nu)=F(\mu)+\iint_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\langle\xi(x), y-x\rangle d \gamma(x, y)+o\left(W_{2}(\mu, \nu)\right) . \tag{4.2}
\end{equation*}
$$

If such ξ exists we say that F is differentiable at μ and we define the gradient vector $\nabla_{\mu} F:=\pi_{\mu}(\xi)$. Using barycentric projections (cfr. [4] Definition 5.4.2) one can show that, for $\gamma \in \Gamma_{o}(\mu, \nu)$,

$$
\iint_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\langle\xi(x), y-x\rangle d \gamma(x, y)=\iint_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\pi_{\mu}(\xi)(x), y-x\right\rangle d \gamma(x, y) .
$$

Thus $\pi_{\mu}(\xi) \in \partial_{\bullet} F(\mu) \cap \partial^{\bullet} F(\mu) \cap T_{\mu} \mathcal{M}$ and it satisfies the analogue of Equation 4.2. It can be shown that the gradient vector is unique, i.e. that $\partial_{\bullet} F(\mu) \cap \partial^{\bullet} F(\mu) \cap T_{\mu} \mathcal{M}=\left\{\pi_{\mu}(\xi)\right\}$.

Finally, if the gradient vector exists for every $\mu \in \mathcal{M}$ we can define the differential or exterior derivative of F to be the 1-form $d F$ determined, for any $\mu \in \mathcal{M}$ and $Y \in T_{\mu} \mathcal{M}$, by $d F(\mu)(Y):=\int_{\mathbb{R}^{D}}\left\langle\nabla_{\mu} F, Y\right\rangle d \mu$.

To simplify the notation we will sometimes write $Y(F)$ rather then $d F(Y)$.
Remark 4.12. Assume $F: \mathcal{M} \rightarrow \mathbb{R}$ is differentiable. Given $X \in$ $\nabla C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$, let ϕ_{t} denote the flow of X. Fix $\mu \in \mathcal{M}$.
(i) Set $\nu_{t}:=(I d+t X)_{\#} \mu$. Then

$$
F\left(\nu_{t}\right)=F(\mu)+t \int_{\mathbb{R}^{D}}\left\langle\nabla_{\mu} F, X\right\rangle d \mu+o(t) .
$$

(ii) Set $\mu_{t}:=\phi_{t \#} \mu$. If $\left\|\nabla_{\mu} F(\mu)\right\|_{\mu}$ is bounded on compact subsets of \mathcal{M} then

$$
F\left(\mu_{t}\right)=F(\mu)+t \int_{\mathbb{R}^{D}}\left\langle\nabla_{\mu} F, X\right\rangle d \mu+o(t) .
$$

Proof: The proof of (i) is a direct consequence of Equation 4.2 and of the fact that, if $r>0$ is small enough, $(I d \times(I d+t X))_{\#} \mu \in \Gamma_{o}\left(\mu, \nu_{t}\right)$ for $t \in[-r, r]$.

To prove (ii), set

$$
A(s, t):=(1-s)(I d+t X)+s \phi_{t}
$$

Notice that $\left\|\phi_{t}-I d-t X\right\|_{\mu} \leq t^{2}\|(\nabla X) X\|_{\infty}$ and that $(s, t) \rightarrow m(s, t):=$ $A(s, t)_{\#} \mu$ defines a continuous map of the compact set $[0,1] \times[-r, r]$ into \mathcal{M}. Hence the range of m is compact so $\left\|\nabla_{\mu} F(\mu)\right\|_{\mu}$ is bounded there by a constant C. We use elementary arguments to conclude that F is C-Lipschitz on the range of m. Let $\bar{\gamma}_{t}:=\left((I d+t X) \times \phi_{t}\right)_{\#} \mu$. We have $\bar{\gamma}_{t} \in \Gamma\left(\nu_{t}, \mu_{t}\right)$ so $W_{2}\left(\mu_{t}, \nu_{t}\right) \leq\left\|\phi_{t}-I d-t X\right\|_{\mu}=0\left(t^{2}\right)$. We conclude that

$$
\left|F\left(\nu_{t}\right)-F\left(\mu_{t}\right)\right| \leq C W_{2}\left(\mu_{t}, \nu_{t}\right)=0\left(t^{2}\right) .
$$

This, together with (i), yields (ii). QED.

Example 4.13. Fix $f \in C_{c}^{\infty}$ and let $F: \mathcal{M} \rightarrow \mathbb{R}$ be the corresponding linear function, as in Example 4.9. Then F is differentiable with gradient $\nabla_{\mu} F \equiv \nabla f$. Thus $d F$ is a linear 1-form on \mathcal{M}. Viceversa, every linear 1-form Λ is exact. In other words, if $\Lambda_{\mu}(X)=\int_{\mathbb{R}^{D}}\langle A, X\rangle d \mu$ for some $A=\nabla f$ then $\Lambda=d F$ for $F(\mu):=\int_{\mathbb{R}^{D}} f d \mu$.
Definition 4.14. Let $\bar{\Lambda}$ be a pseudo 1 -form on \mathcal{M}. We say that $\bar{\Lambda}$ is differentiable with exterior derivative $d \bar{\Lambda}$ if (i) for all $X \in \nabla C_{c}^{\infty}$, the function $\bar{\Lambda}(X)$ is differentiable and (ii) for all $X, Y \in \nabla C_{c}^{\infty}$, setting

$$
\begin{equation*}
d \bar{\Lambda}(X, Y):=X \bar{\Lambda}(Y)-Y \bar{\Lambda}(X)-\bar{\Lambda}([X, Y]) \tag{4.3}
\end{equation*}
$$

yields a well-defined pseudo 2-form $d \bar{\Lambda}$ on \mathcal{M} (see Definition 4.11 for notation).

Remark 4.15. The logic of this definition is as follows. As in Section 3.2, X and Y define fundamental vector fields on \mathcal{M}. In particular we can think of the construction of fundamental vector fields as a canonical way of extending the given tangent vectors X, Y at any point $\mu \in \mathcal{M}$ to global tangent vector fields on \mathcal{M}. Equation 4.3 then mimics Equation A. 11 for $k=1$. Notice that $d \bar{\Lambda}$ will satisfy the continuity assumption for pseudo 2 -forms only if cancelling occurs to eliminate first-order terms as in Equation A.11, cfr. Remark A.7.
Example 4.16. Assume $\bar{\Lambda}$ is a linear pseudo 1-form, i.e. $\bar{\Lambda}(\cdot)=$ $\int_{\mathbb{R}^{D}}\langle\bar{A}, \cdot\rangle d \mu$ for some $\bar{A} \in \mathcal{X}_{c}$. Then $\bar{\Lambda}$ is differentiable and $d \bar{\Lambda}(X, Y)=$ $\int_{\mathbb{R}^{D}}\left\langle\left(\nabla \bar{A}-\nabla \bar{A}^{T}\right) X, Y\right\rangle d \mu$. In particular $d \bar{\Lambda}$ is a linear pseudo 2-form. Furthermore if $\bar{\Lambda}$ is a linear 1-form, i.e. $\bar{A}=\nabla f$ for some $f \in C_{c}^{\infty}$, then $d \bar{\Lambda}=0$.

5. Calculus of pseudo differential 1-FORms

Given a 1-form α on a finite-dimensional manifold, Green's formula compares the integral of $d \alpha$ along a surface to the integral of α along the boundary curves. In Section 5.1 we show that an analogous result for \mathcal{M} is rather simple when strong regularity assumptions are imposed on the surface. However, from the point of view of applications it is important to establish Green's formula under weaker assumptions. This is the main goal of this section. To achieve this we will mainly work with pseudo 1-forms.
5.1. Green's formula for smooth surfaces and 1-forms. Let S : $[0,1] \times[0, T] \rightarrow \mathcal{M}$ denote a map such that, for each $s \in[0,1], S(s, \cdot) \in$ $A C_{2}(0, T ; \mathcal{M})$ and, for each $t \in[0, T], S(\cdot, t) \in A C_{2}((0,1) ; \mathcal{M})$. Let $v(s, \cdot, \cdot)$ denote the velocity of minimal norm for $S(s, \cdot)$ and $w(\cdot, t, \cdot)$ denote the velocity of minimal norm for $S(\cdot, t)$. We assume that $v, w \in$ $C^{2}\left([0,1] \times[0, T] \times \mathbb{R}^{D}, \mathbb{R}^{D}\right)$ and that their derivatives up to third order are bounded. We further assume that v and w are gradient vector fields so that $\partial_{s} v$ and $\partial_{t} w$ are also gradients.

Let Λ be a differentiable pseudo 1 -form on \mathcal{M} such that $\Lambda_{\mu}(u)=0$ whenever $u \in L^{2}(\mu)$ and $d i v_{\mu} u=0$. Because of this, we may view Λ as a 1 -form on \mathcal{M}. Assume that

$$
\begin{equation*}
\sup _{\mu \in \mathcal{K}}\left\|\Lambda_{\mu}\right\|<\infty \tag{5.1}
\end{equation*}
$$

for all compact subsets $\mathcal{K} \subset \mathcal{M}$, where $\left\|\Lambda_{\mu}\right\|:=\sup _{v}\left\{\Lambda_{\mu}(v): v \in\right.$ $\left.T_{\mu} \mathcal{M},\|v\|_{\mu} \leq 1\right\}$. We also assume that for all compact subsets $\mathcal{K} \subset \mathcal{M}$ there exists a constant $C_{\mathcal{K}}$ such that

$$
\begin{equation*}
\left|\Lambda_{\nu}(u)-\Lambda_{\mu}(u)\right| \leq C_{\mathcal{K}} W_{2}(\mu, \nu)\left(\|u\|_{\infty}+\|\nabla u\|_{\infty}\right) \tag{5.2}
\end{equation*}
$$

for $\mu, \nu \in \mathcal{K}$ and $u \in C_{b}\left(\mathbb{R}^{D}, \mathbb{R}^{D}\right)$ such that ∇u is bounded.
Using Remark 2.11, Proposition 2.12 and the bound on v, w and on their derivatives, we find that S is $1 / 2-$ Hölder continuous. Hence its range is compact so $\left\|\Lambda_{S(s, t)}\right\|$ is bounded. We then use Equations 5.1, 5.2 and Taylor expansions for w_{t+h}^{s} and v_{t}^{s+h} to obtain that

$$
\begin{equation*}
\partial_{t}\left(\Lambda_{S(s, t)}\left(w_{t}^{s}\right)\right)_{\mid s=\bar{s}, t=\bar{t}}=v_{\bar{t}}^{\bar{s}}\left(\Lambda_{S(s, t)}\left(w_{\bar{t}}^{\bar{s}}\right)\right)+\Lambda_{S(\bar{s}, \bar{t})}\left(\partial_{t} w_{t}^{s}\right), \tag{5.3}
\end{equation*}
$$

where we use the notation of Definition 4.11. Similarly,

$$
\begin{equation*}
\partial_{s}\left(\Lambda_{S(s, t)}\left(v_{t}^{s}\right)\right)_{\mid s=\bar{s}, t=\bar{t}}=w_{t}^{\bar{s}}\left(\Lambda_{S(s, t)}\left(v_{t}^{\bar{s}}\right)\right)+\Lambda_{S(\bar{s}, t)}\left(\partial_{s} v_{t}^{s}\right) . \tag{5.4}
\end{equation*}
$$

Now suppose that $S(s, t)=\rho(s, t, \cdot) \mathcal{L}^{D}$ for some $\rho \in C^{1}([0,1] \times$ $[0, T] \times \mathbb{R}^{D}$) which is bounded with bounded derivatives. Then the following lemma holds.
Lemma 5.1. For $(s, t) \in(r, 1) \times(0, T)$ we have $\left(\partial_{t} w_{t}^{s}-\partial_{s} v_{t}^{s}\right)-\left[w_{t}^{s}, v_{t}^{s}\right] \in$ $\operatorname{Ker}\left(\operatorname{div}_{S(s, t)}\right)$.

Proof: We have, in the sense of distributions,

$$
\begin{equation*}
\partial_{t} \rho_{t}^{s}+\nabla \cdot\left(\rho_{t}^{s} v_{t}^{s}\right)=0, \quad \partial_{s} \rho_{t}^{s}+\nabla \cdot\left(\rho_{t}^{s} w_{t}^{s}\right)=0 \tag{5.5}
\end{equation*}
$$

and so

$$
\nabla \cdot \partial_{s}\left(\rho_{t}^{s} v_{t}^{s}\right)=-\partial_{s} \partial_{t} \rho_{t}^{s}=\nabla \cdot\left(\partial_{t} \rho_{t}^{s} w_{t}^{s}\right)
$$

We use that ρ, v and w are smooth to conclude that

$$
\nabla \cdot\left(v_{t}^{s} \partial_{s} \rho_{t}^{s}+\rho_{t}^{s} \partial_{s} v_{t}^{s}\right)=\nabla \cdot\left(w_{t}^{s} \partial_{t} \rho_{t}^{s}+\rho_{t}^{s} \partial_{t} w_{t}^{s}\right)
$$

This implies that if $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$ then

$$
\begin{equation*}
\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi, v_{t}^{s} \partial_{s} \rho_{t}^{s}+\rho_{t}^{s} \partial_{s} v_{t}^{s}\right\rangle=\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi, w_{t}^{s} \partial_{t} \rho_{t}^{s}+\rho_{t}^{s} \partial_{t} w_{t}^{s}\right\rangle \tag{5.6}
\end{equation*}
$$

We use again that ρ, v and w are smooth to obtain that Equation 5.5 holds pointwise. Hence, Equation 5.6 implies

$$
\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi,-v_{t}^{s} \nabla \cdot\left(\rho_{t}^{s} w_{t}^{s}\right)+\rho_{t}^{s} \partial_{s} v_{t}^{s}\right\rangle=\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi,-w_{t}^{s} \nabla \cdot\left(\rho_{t}^{s} v_{t}^{s}\right)+\rho_{t}^{s} \partial_{t} w_{t}^{s}\right\rangle .
$$

Rearranging, this leads to

$$
\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi, \partial_{s} v_{t}^{s}-\partial_{t} w_{t}^{s}\right\rangle \rho_{t}^{s} d \mathcal{L}^{D}=\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi, v_{t}^{s}\right\rangle \nabla \cdot\left(\rho_{t}^{s} w_{t}^{s}\right)-\left\langle\nabla \varphi, w_{t}^{s}\right\rangle \nabla \cdot\left(\rho_{t}^{s} v_{t}^{s}\right) .
$$

Integrating by parts and substituting $\rho_{t}^{s} \mathcal{L}^{D}$ with $S(s, t)$ we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{D}}\left\langle\nabla \varphi, \partial_{s} v_{t}^{s}-\partial_{t} w_{t}^{s}\right\rangle d S(s, t) \\
& =\int_{\mathbb{R}^{D}}\left(\left\langle\nabla^{2} \varphi w_{t}^{s}+\left(\nabla w_{t}^{s}\right)^{T} \nabla \varphi, v_{t}^{s}\right\rangle-\left\langle\nabla^{2} \varphi v_{t}^{s}+\left(\nabla v_{t}^{s}\right)^{T} \nabla \varphi, w_{t}^{s}\right\rangle\right) d S \\
& =\int_{\mathbb{R}^{D}}\left\langle\nabla \varphi,\left[v_{t}^{s}, w_{t}^{s}\right]\right\rangle d S(s, t) .
\end{aligned}
$$

Since $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$ is arbitrary, the proof is finished.
We combine Equations 5.3 and 5.4 and use Lemma 5.1 to conclude the following.

Proposition 5.2. For each $t \in(0, T)$ and $s \in(a, b)$ we have

$$
\begin{equation*}
\partial_{t}\left(\Lambda_{S(s, t)}\left(w_{t}^{s}\right)\right)-\partial_{s}\left(\Lambda_{S(s, t)}\left(v_{t}^{s}\right)\right)=d \Lambda_{S(s, t)}\left(v_{t}^{s}, w_{t}^{s}\right) . \tag{5.7}
\end{equation*}
$$

Next, we define $\left\|d \Lambda_{\mu}\right\|$ to be the smallest nonnegative number λ such that $\left|d \Lambda_{\mu}(X, Y)\right| \leq \lambda\|X\|_{\mu}\|Y\|_{\mu}$ for $X, Y \in \nabla C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$.

Theorem 5.3 (Green's formula for smooth surfaces). Let S be the surface in \mathcal{M} defined above and let its boundary ∂S be the union of the negatively oriented curves $S(r, \cdot), S(\cdot, T)$ and the positively oriented curves $S(1, \cdot), S(\cdot, 0)$. Suppose that $\mu \rightarrow\left\|d \Lambda_{\mu}\right\|$ is also bounded on compact subsets of \mathcal{M}. Then

$$
\int_{S} d \Lambda=\int_{\partial S} \Lambda .
$$

Proof: Recall that v_{t}^{s}, w_{t}^{s} and their derivatives are bounded. This, together with Equations 5.1 and 5.2, implies that the functions $(s, t) \rightarrow$ $\Lambda_{S(s, t)}\left(v_{t}^{s}\right)$ and $(s, t) \rightarrow \Lambda_{S(s, t)}\left(w_{t}^{s}\right)$ are continuous. Hence, by Proposition 5.2, $(s, t) \rightarrow d \Lambda_{S(s, t)}\left(v_{t}^{s}, w_{t}^{s}\right)$ is Borel measurable as it is a limit of quotients of continuous functions. The fact that $\mu \rightarrow\left\|d \Lambda_{\mu}\right\|$ is bounded on compact subsets of \mathcal{M} gives that $(s, t) \rightarrow d \Lambda_{S(s, t)}\left(v_{t}^{s}, w_{t}^{s}\right)$ is bounded. The rest of the proof of this theorem is identical to that of Theorem 5.33 when we use Proposition 5.2 in place of Corollary 5.31. QED.

5.2. Regularity and differentiability of pseudo 1-forms.

Definition 5.4. Let $\mu \rightarrow \bar{\Lambda}_{\mu}=\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\mu}, \cdot\right\rangle d \mu$ be a pseudo 1 -form on \mathcal{M}. We will say that $\bar{\Lambda}$ is regular if for each $\mu \in \mathcal{M}$ there exists a

Borel field of $D \times D$ matrices $B_{\mu} \in L^{\infty}\left(\mathbb{R}^{D} \times \mathbb{R}^{D}, \mu\right)$ and a function $O_{\mu} \in C(\mathbb{R})$ with $O_{\mu}(0)=0$ such that

$$
\begin{align*}
& \sup _{\gamma}\left\{\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left|\bar{A}_{\nu}(y)-\bar{A}_{\mu}(x)-B_{\mu}(x)(y-x)\right|^{2} d \gamma(x, y), \gamma \in \Gamma_{o}(\mu, \nu)\right\} \\
& (5.8) \tag{5.8}\\
& \leq W_{2}^{2}(\mu, \nu) \min \left\{O_{\mu}\left(W_{2}(\mu, \nu)\right), c(\bar{\Lambda})\right\}^{2} .
\end{align*}
$$

where $\Gamma_{o}(\mu, \nu)$ is the set of γ minimizers in Equation 2.1 and $c(\bar{\Lambda})>0$ is a constant independent of μ. We also assume that $\left\|B_{\mu}\right\|_{\mu}$ is uniformly bounded. Taking $c(\bar{\Lambda})$ large enough, there is no loss of generality in assuming that

$$
\begin{equation*}
\sup _{\mu \in \mathcal{M}}\left\|B_{\mu}\right\|_{\mu} \leq c(\bar{\Lambda}) \tag{5.9}
\end{equation*}
$$

Remark 5.5. Assumption 5.8 could be substantially weakened for our purposes. We only make such a strong assumption to avoid introducing more notation and making longer computations.

Example 5.6. Every linear pseudo 1 -form is regular. In other words, given $\bar{A} \in \mathcal{X}_{c}$, if we define $\bar{\Lambda}_{\mu}(Y):=\int_{\mathbb{R}^{D}}\langle\bar{A}, Y\rangle d \mu$ then $\bar{\Lambda}$ is regular. Indeed, setting $B_{\mu}:=\nabla \bar{A}$ we use Taylor expansion and the fact that the second derivatives of A are bounded to obtain Equation 5.8.

Remark 5.7. Let $\bar{\Lambda}$ be as in Example 5.6. Then the restriction of $\bar{\Lambda}$ to $T \mathcal{M}$ gives a 1 -form Λ defined by

$$
\Lambda_{\mu}(Y):=\int_{\mathbb{R}^{D}}\left\langle\pi_{\mu}(\bar{A}), Y\right\rangle d \mu \quad \forall Y \in T_{\mu} \mathcal{M}
$$

It is not clear what smoothness properties the projections $\mu \rightarrow \pi_{\mu}$ might have with respect to $\mu \in \mathcal{M}$. This is one reason why in this context it seems more practical to work with \bar{A} rather than with its projections.

From now till the end of Section 5 we assume $\bar{\Lambda}$ is a regular pseudo 1-form on \mathcal{M} and we use the notation \bar{A}_{μ}, B_{μ} as in Definition 5.4.
Remark 5.8. If $\mu, \nu \in \mathcal{M}, X \in L^{2}(\mu), Y \in L^{2}(\nu)$ and $\gamma \in \Gamma_{o}(\mu, \nu)$ then

$$
\begin{align*}
\bar{\Lambda}_{\nu}(Y)-\bar{\Lambda}_{\mu}(X) & -\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left(\left\langle\bar{A}_{\mu}(x), Y(y)-X(x)\right\rangle+\left\langle B_{\mu}(x)(y-x), Y(y)\right\rangle\right) d \gamma \\
& =\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\nu}(y)-\bar{A}_{\mu}(x)-B_{\mu}(x)(y-x), Y(y)\right\rangle d \gamma(x, y) . \tag{5.10}
\end{align*}
$$

By Equation 5.8 and Hölder's inequality
$\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\nu}(y)-\bar{A}_{\mu}(x)-B_{\mu}(x)(y-x), Y(y)\right\rangle\right| \leq W_{2}(\mu, \nu) c(\bar{\Lambda})\|Y\|_{\nu}$.
Similarly, Equation 5.9 and Hölder's inequality yield

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\mu}(x)(y-x), Y(y)\right\rangle\right| \leq W_{2}(\mu, \nu) c(\bar{\Lambda})\|Y\|_{\nu} . \tag{5.12}
\end{equation*}
$$

We use Equations 5.11 and 5.12 to obtain
(5.13) $\leq 2 c(\bar{\Lambda}) W_{2}(\mu, \nu)\|Y\|_{\nu}$.

Remark 5.9. Let $Y \in C_{c}^{1}\left(\mathbb{R}^{D}\right)$ and define $F(\mu):=\bar{\Lambda}_{\mu}(Y)$. Then

$$
|F(\nu)-F(\mu)| \leq W_{2}(\nu, \mu)\left(\left\|\bar{A}_{\nu}\right\|_{\nu}\|\nabla Y\|_{\infty}+2 c(\bar{\Lambda})\|Y\|_{\infty}\right)
$$

Proof: By Hölder's inequality

$$
\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\mu}(x), Y(y)-Y(x)\right\rangle d \gamma(x, y)\right| \leq\left\|\bar{A}_{\mu}\right\|_{\mu}\|\nabla Y\|_{\infty} W_{2}(\nu, \mu) .
$$

We apply Remark 5.8 with $Y=X$ and we exchange the role of μ and ν to conclude the proof.

QED.
Lemma 5.10. The function

$$
\mathcal{M} \rightarrow \mathbb{R}, \quad \mu \mapsto\left\|\bar{A}_{\mu}\right\|_{\mu}
$$

is continuous on \mathcal{M} and bounded on bounded subsets of \mathcal{M}. Suppose $S:[r, 1] \times[a, b] \rightarrow \mathcal{M}$ is continuous. Then

$$
\sup _{(s, t) \in[r, 1] \times[a, b]}\left\|\bar{A}_{S(s, t)}\right\|_{S(s, t)}<\infty
$$

Proof: Fix $\mu_{0} \in \mathcal{M}$. For each $\mu \in \mathcal{M}$ we choose $\gamma_{\mu} \in \Gamma_{o}\left(\mu_{0}, \mu\right)$. We have

$$
\left|\left|\left|\bar{A}_{\mu}\right|\right|_{\mu}-\left|\left|\bar{A}_{\mu_{0}}\right|\right|_{\mu_{0}}\right|=\left|\left|\left|\bar{A}_{\mu}(y)\right|\right|_{\gamma_{\mu}}-\left|\left|\bar{A}_{\mu_{0}}(x)\right|\right|_{\gamma_{\mu}}\right| \leq \| \bar{A}_{\mu}(y)-\bar{A}_{\mu_{0}}(x)| |_{\gamma_{\mu}} .
$$

This, together with Equations 5.8 and 5.9, yields

$$
\left|\left|| \overline { A } _ { \mu } | \left\|_{\mu}-\left|\left|\overline { A } _ { \mu _ { 0 } } \left\|_{\mu_{0}}\left|\leq \| B_{\mu_{0}}(x)(y-x)\right|_{\gamma_{\mu}}+c(\bar{\Lambda}) W_{2}\left(\mu_{0}, \mu\right) \leq 2 c(\bar{\Lambda}) W_{2}\left(\mu_{0}, \mu\right) .\right.\right.\right.\right.\right.\right.
$$

To obtain the last inequality we have used Hölder's inequality. This proves the first claim.

Notice that $(s, t) \rightarrow\left\|\bar{A}_{S(s, t)}\right\|_{S(s, t)}$ is the composition of two continuous functions and is defined on the compact set $[r, 1] \times[a, b]$. Hence it achieves its maximum.

Lemma 5.11. Let $Y \in C_{c}^{2}\left(\mathbb{R}^{D}\right)$ and define $F(\mu):=\bar{\Lambda}_{\mu}(Y)$. Then F is differentiable with gradient $\nabla_{\mu} F=\pi_{\mu}\left(\nabla Y^{T}(x) \bar{A}_{\mu}(x)+B_{\mu}^{T}(x) Y(x)\right)$.

Furthermore, assume $X \in \nabla C_{c}^{2}\left(\mathbb{R}^{D}\right)$ and let $\varphi_{t}(x)=x+t X(x)+$ $t \bar{O}_{t}(x)$, where \bar{O}_{t} is any continuous function on \mathbb{R}^{D} such that $\left\|\bar{O}_{t}\right\|_{\infty}$ tends to 0 as tends to 0 . Set $\mu_{t}:=\varphi(t, \cdot)_{\#} \mu$. Then

$$
\begin{aligned}
& F\left(\mu_{t}\right)=F(\mu) \\
& (5.14)+t \int_{\mathbb{R}^{D}}\left[\left\langle\bar{A}_{\mu}(x), \nabla Y(x) X(x)\right\rangle+\left\langle B_{\mu}(x) X(x), Y(x)\right\rangle\right] d \mu+o(t) .
\end{aligned}
$$

Proof: Choose $\mu, \nu \in \mathcal{M}$ and $\gamma \in \Gamma_{0}(\mu, \nu)$. As in Remark 5.8,

$$
\begin{aligned}
& \bar{\Lambda}_{\nu}(Y)-\bar{\Lambda}_{\mu}(Y) \\
& -\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left(\left\langle\bar{A}_{\mu}(x), Y(y)-Y(x)\right\rangle+\left\langle B_{\mu}(x)(y-x), Y(y)\right\rangle\right) d \gamma \\
& =\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\nu}(y)-\bar{A}_{\mu}(x)-B_{\mu}(x)(y-x), Y(y)\right\rangle d \gamma(x, y) .
\end{aligned}
$$

By Equation 5.8 and Hölder's inequality,

$$
\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\nu}(y)-\bar{A}_{\mu}(x)-B_{\mu}(x)(y-x), Y(y)\right\rangle\right| \leq o\left(W_{2}(\mu, \nu)\right)\|Y\|_{\nu} .
$$

Since $Y \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$ we can write $Y(y)=Y(x)+\nabla Y(x)(y-x)+$ $R(x, y)(y-x)^{2}$, for some continuous $R=R(x, y)$ with compact support. Then

$$
\begin{align*}
\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\mu}(x), Y(y)-Y(x)\right\rangle d \gamma & =\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\mu}(x), \nabla Y(x)(y-x)\right\rangle d \gamma \\
& +\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle A_{\mu}(x), R \cdot(y-x)^{2}\right\rangle d \gamma \tag{5.15}
\end{align*}
$$

We now want to show that the term in Equation 5.15 is of the form $o\left(W_{2}(\mu, \nu)\right)$ as ν tends to μ. For any $\epsilon>0$, choose a smooth compactly supported vector field $Z=Z(x)$ such that $\left\|\bar{A}_{\mu}-Z\right\|_{\mu}<\epsilon$. Then, using Hölder's inequality,

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle A_{\mu}(x), R \cdot(y-x)^{2}\right\rangle d \gamma(x, y)\right| \\
& \leq \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left|\left\langle(y-x)^{T} R^{T}\left(A_{\mu}(x)-Z(x)\right), y-x\right\rangle\right| d \gamma(x, y) \\
& +\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left|\left\langle Z(x), R \cdot(y-x)^{2}\right\rangle\right| d \gamma(x, y) \\
& \leq\left\|(y-x)^{T} R^{T}\right\|_{\infty} \epsilon W_{2}(\mu, \nu)+\left\|R^{T} Z\right\|_{\infty} W_{2}^{2}(\mu, \nu)
\end{aligned}
$$

Since ϵ and $\|Z\|_{\infty}$ are independent of ν, this gives the required estimate. Likewise,

$$
\begin{aligned}
& \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\mu}(x)(y-x), Y(y)\right\rangle d \gamma(x, y) \\
& =\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\mu}(x)(y-x), Y(y)-Y(x)\right\rangle d \gamma(x, y) \\
& +\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\mu}(x)(y-x), Y(x)\right\rangle d \gamma(x, y) \\
& =\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\mu}(x)(y-x), Y(x)\right\rangle d \gamma(x, y)+o\left(W_{2}(\mu, \nu)\right) .
\end{aligned}
$$

Combining these results shows that

$$
\begin{aligned}
& \bar{\Lambda}_{\nu}(Y)=\bar{\Lambda}_{\mu}(Y) \\
& +\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\nabla Y^{T}(x) \bar{A}_{\mu}(x)+B_{\mu}^{T}(x) Y(x), y-x\right\rangle d \gamma(x, y)+o\left(W_{2}(\mu, \nu)\right) .
\end{aligned}
$$

As in Definition 4.11, this proves that F is differentiable and that $\nabla_{\mu} F=\pi_{\mu}\left(\nabla Y^{T}(x) \bar{A}_{\mu}(x)+B_{\mu}^{T}(x) Y(x)\right)$.

Now assume that ϕ_{t} is the flow of X. Notice that the curve $t \rightarrow \mu_{t}$ belongs to $A C_{2}(-r, r ; \mathcal{M})$ for $r>0$. We could choose for instance $r=1$. Hence the curve is continuous on $[-1,1]$. By Lemma 5.10, the composed function $t \rightarrow\left\|\bar{A}_{\mu_{t}}\right\|_{\mu_{t}}$ is also continuous. Hence its range is compact in \mathbb{R}, so there exists $\bar{C}>0$ such that $\left\|\bar{A}_{\mu_{t}}\right\|_{\mu_{t}} \leq \bar{C}$ for all $t \in[-1,1]$. We may now use Remark 4.12 to conclude.

The general case of ϕ_{t} as in the statement of Lemma 5.11 can be studied using analogous methods.

Lemma 5.12. Any regular pseudo 1-form is differentiable in the sense of Definition 4.14. Furthermore, $\forall X, Y \in T_{\mu} \mathcal{M}$,

$$
\begin{equation*}
d \bar{\Lambda}_{\mu}(X, Y)=\int_{\mathbb{R}^{D}}\left\langle\left(B_{\mu}-B_{\mu}^{T}\right) X, Y\right\rangle d \mu \tag{5.16}
\end{equation*}
$$

Proof: We need to check the validity of Definition 4.14. Choose $X, Y \in$ $C_{c}^{2}\left(\mathbb{R}^{D}\right)$. By Lemma 5.11, $\bar{\Lambda}(X)$ and $\bar{\Lambda}(Y)$ are differentiable functions on M. Using the expression given in Lemma 5.11 for their gradients, it is simple to check that

$$
\begin{equation*}
X \bar{\Lambda}(Y)-Y \bar{\Lambda}(X)-\bar{\Lambda}([X, Y])=\int_{\mathbb{R}^{D}}\left\langle\left(B_{\mu}-B_{\mu}^{T}\right) X, Y\right\rangle d \mu \tag{5.17}
\end{equation*}
$$

Since the right hand side of Equation 5.17 is continuous, multilinear and alternating, $d \bar{\Lambda}(X, Y)$ is a well-defined pseudo 2-form on \mathcal{M}. QED.
5.3. Further continuity and differentiability properties of regular forms. We collect here various other regularity properties of regular pseudo 1 -forms.

Corollary 5.13. Choose $\sigma \in A C_{2}(a, b ; \mathcal{M})$. For $r>0$ and $s \in[r, 1]$, define

$$
D_{s}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}, \quad D_{s}(x):=s x .
$$

Set $\sigma_{t}^{s}=D_{s \#} \sigma_{t}$. Then there exists a constant $C_{\sigma}(r)$ depending only on σ and r such that $\left\|\bar{A}_{\sigma_{t}^{s}}\right\|_{\sigma_{t}^{s}} \leq C_{\sigma}(r)$ for all $(s, t) \in[r, 1] \times[a, b]$.
Proof: By Remark 2.11 (i), $\sigma:[a, b] \rightarrow \mathcal{M}$ is $1 / 2-$ Hölder continuous: there exists a constant $c>0$ such that $W_{2}^{2}\left(\sigma_{t_{2}}, \sigma_{t_{1}}\right) \leq c\left|t_{2}-t_{1}\right|$. Together with Proposition 4.1 and the fact that $\operatorname{Lip}\left(D_{s}\right)=s \leq 1$, this gives that $t \rightarrow \sigma_{t}^{s}$ is uniformly $1 / 2$-Hölder continuous:

$$
W_{2}^{2}\left(\sigma_{t_{2}}^{s}, \sigma_{t_{1}}^{s}\right) \leq W_{2}^{2}\left(\sigma_{t_{2}}, \sigma_{t_{1}}\right) \leq c\left|t_{2}-t_{1}\right| .
$$

Remark 2.11 (ii) ensures that $\left\{\sigma_{t} \mid t \in[a, b]\right\}$ is bounded and so there exists $\bar{c}>0$ such that $W_{2}\left(\sigma_{t}, \delta_{0}\right) \leq \bar{c}$ for all $t \in[a, b]$. One can readily check that $\gamma:=\left(D_{s_{1}} \times D_{s_{2}}\right)_{\#} \sigma_{t} \in \Gamma\left(\sigma_{t}^{s_{1}}, \sigma_{t}^{s_{2}}\right)$, so

$$
\begin{aligned}
W_{2}^{2}\left(\sigma_{t}^{s_{1}}, \sigma_{t}^{s_{2}}\right) & \leq \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}|x-y|^{2} d \gamma=\int_{\mathbb{R}^{D}}\left|D_{s_{1}} x-D_{s_{2}} x\right|^{2} d \sigma_{t}(x) \\
& =\left|s_{2}-s_{1}\right|^{2} \int_{\mathbb{R}^{D}}|x|^{2} d \sigma_{t}(x) \leq \bar{c}\left|s_{2}-s_{1}\right|^{2}
\end{aligned}
$$

Thus $s \rightarrow \sigma_{t}^{s}$ is 1 -Lipschitz. Consequently $(t, s) \rightarrow \sigma_{t}^{s}$ is $1 / 2$-Hölder continuous. This, together with Lemma 5.10, yields the proof. QED.

Lemma 5.14. Assume $\left\{\mu_{\epsilon}\right\}_{\epsilon \in E} \subset \mathcal{M}$ and $v_{\epsilon} \in L^{2}\left(\mu_{\epsilon}\right)$ are such that $C:=\sup _{\epsilon \in E}\left\|v_{\epsilon}\right\|_{L^{2}\left(\mu_{\epsilon}\right)}$ is finite. Assume $\left\{\mu_{\epsilon}\right\}_{\epsilon \in E}$ converges to μ in \mathcal{M} as ϵ tends to 0 and that there exists $v \in L^{2}(\mu)$ such that $\left\{v_{\epsilon} \mu_{\epsilon}\right\}_{\epsilon \in E}$ converges weak-* to $v \mu$, as $\epsilon \rightarrow 0$. If $\gamma_{\epsilon} \in \Gamma_{o}\left(\mu, \mu_{\epsilon}\right)$ then $\lim _{\epsilon \rightarrow 0} a_{\epsilon}=0$, where $a_{\epsilon}=\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\mu}(x), v_{\epsilon}(y)-v(x)\right\rangle d \gamma_{\epsilon}(x, y)$.

Proof: It is easy to obtain that $\|v\|_{L^{2}(\mu)} \leq C$. Let $\gamma_{\epsilon} \in \Gamma_{o}\left(\mu, \mu_{\epsilon}\right)$ and $\xi \in \mathcal{X}_{c}$. Then there exists a bounded function $C_{\xi} \in C\left(\mathbb{R}^{D} \times \mathbb{R}^{D}\right)$ and a real number M such that

$$
\begin{equation*}
\xi(x)-\xi(y)=\nabla \xi(y)(x-y)+|x-y|^{2} C_{\xi}(x, y), \quad\left|C_{\xi}(x, y)\right| \leq M, \tag{5.18}
\end{equation*}
$$

for $x, y \in \mathbb{R}^{D}$. We use the first equality in Equation 5.18 to obtain that

$$
\begin{aligned}
& \left\langle\bar{A}_{\mu}(x), v_{\epsilon}(y)-v(x)\right\rangle \\
& =\left\langle\bar{A}_{\mu}(x)-\xi(x), v_{\epsilon}(y)-v(x)\right\rangle+\left\langle\xi(y), v_{\epsilon}(y)\right\rangle \\
& \left.-\langle\xi(x), v(x)\rangle+\langle\nabla \xi(y)(x-y)+| x-\left.y\right|^{2} C_{\xi}(x, y), v_{\epsilon}(y)\right\rangle .
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left|a_{\epsilon}\right| & \leq\left\|\bar{A}_{\mu}(x)-\xi(x)\right\|_{L^{2}\left(\gamma_{\epsilon}\right)}| | v_{\epsilon}(y)-v(x) \|_{L^{2}\left(\gamma_{\epsilon}\right)}+b_{\epsilon} \\
& +\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left(\nabla \xi(y)(x-y)+|x-y|^{2} C_{\xi}(x, y)\right) d \gamma_{\epsilon}(x, y)\right| \tag{5.19}
\end{align*}
$$

Above, we have set $b_{\epsilon}:=\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left(\left\langle\xi(y), v_{\epsilon}(y)\right\rangle-\langle\xi(x), v(x)\rangle\right) d \gamma_{\epsilon}(x, y)\right|$. By the second inequality in Equation 5.18 and by Equation 5.19
(5.20) $\left|a_{\epsilon}\right| \leq 2 C\left\|\bar{A}_{\mu}-\xi\right\|_{L^{2}(\mu)}+b_{\epsilon}+\|\nabla \xi\|_{\infty} W_{2}\left(\mu, \mu_{\epsilon}\right)+M W_{2}^{2}\left(\mu, \mu_{\epsilon}\right)$.

By assumption $\left\{W_{2}\left(\mu, \mu_{\epsilon}\right)\right\}_{\epsilon \in E}$ tends to 0 and $\left\{b_{\epsilon}\right\}_{\epsilon \in E}$ tends to 0 as ϵ tends to 0 . These facts, together with Equation 5.20, yield

$$
\limsup _{\epsilon \rightarrow 0}\left|a_{\epsilon}\right| \leq 2 C| | \bar{A}_{\mu}-\xi \|_{L^{2}(\mu)}
$$

for arbitrary $\xi \in \mathcal{X}_{c}$. We use that \mathcal{X}_{c} is dense in $L^{2}(\mu)$ to conclude that $\lim _{\epsilon \rightarrow} a_{\epsilon}=0$.

QED.

Corollary 5.15. Assume $\left\{\mu_{\epsilon}\right\}_{\epsilon \in E} \subset \mathcal{M}, \mu, v_{\epsilon} \in L^{2}\left(\mu_{\epsilon}\right)$ and v satisfy the assumptions of Lemma 5.14. Then $\lim _{\epsilon \rightarrow 0} \bar{\Lambda}_{\mu_{\epsilon}}\left(v_{\epsilon}\right)=\bar{\Lambda}_{\mu}(v)$.
Proof: Let $\gamma_{\epsilon} \in \Gamma_{o}\left(\mu, \mu_{\epsilon}\right)$. Observe that

$$
\begin{align*}
& \left\langle\bar{A}_{\mu_{\epsilon}}(y), v_{\epsilon}(y)\right\rangle-\left\langle\bar{A}_{\mu}(x), v(x)\right\rangle \\
& =\left\langle\bar{A}_{\mu}(x), v_{\epsilon}(y)-v(x)\right\rangle+\left\langle B_{\mu}(x)(y-x), v_{\epsilon}(y)\right\rangle \\
& +\left\langle\bar{A}_{\mu_{\epsilon}}(y)-\bar{A}_{\mu}(x)-B_{\mu}(x)(y-x), v_{\epsilon}(y)\right\rangle . \tag{5.21}
\end{align*}
$$

We now integrate Equation 5.21 over $\mathbb{R}^{D} \times \mathbb{R}^{D}$ and use Equations 5.8-5.9 and the fact that $\gamma_{\epsilon} \in \Gamma_{o}\left(\mu, \mu_{\epsilon}\right)$. We obtain

$$
\begin{align*}
\left|\bar{\Lambda}_{\mu_{\epsilon}}\left(v_{\epsilon}\right)-\bar{\Lambda}_{\mu}(v)\right| & \leq\left|a_{\epsilon}\right|+\left\|B_{\mu}\right\|_{L^{\infty}(\mu)} W_{2}\left(\mu, \mu_{\epsilon}\right)| | v_{\epsilon} \mid\left\|_{\mu_{\epsilon}}+o\left(W_{2}\left(\mu, \mu_{\epsilon}\right)\right)\right\| v_{\epsilon} \|_{\mu_{\epsilon}} \\
(5.22) & \leq\left|a_{\epsilon}\right|+C| | B_{\mu} \|_{L^{\infty}(\mu)} W_{2}\left(\mu, \mu_{\epsilon}\right)+C o\left(W_{2}\left(\mu, \mu_{\epsilon}\right)\right) . \tag{5.22}
\end{align*}
$$

Letting ϵ tend to 0 in Equation 5.22 we conclude the proof of the corollary.

QED.

Lemma 5.16 (continuity of $\bar{\Lambda}_{\sigma_{t}}\left(X_{t}\right)$). Suppose $\sigma \in A C_{2}(a, b ; \mathcal{M})$. If $X \in C\left((a, b) \times \mathbb{R}^{D}, \mathbb{R}^{D}\right)$ then $t \rightarrow \bar{\Lambda}_{\sigma_{t}}\left(X_{t}\right)=: \lambda(t)$ is continuous on (a, b).

Proof: Fix $t \in(a, b)$ so that t belongs to the interior of a compact set $K^{*} \subset(a, b)$. Let $\varphi \in C_{c}\left(\mathbb{R}^{D}, \mathbb{R}^{D}\right)$ and denote by K a compact set
containing its support. Observe that X is uniformly continuous on $K^{*} \times K$ so

$$
\begin{align*}
& \limsup _{h \rightarrow 0}\left|\int_{\mathbb{R}^{D}}\left\langle\varphi(x), X_{t+h}(x)-X_{t}(x)\right\rangle d \sigma_{t+h}(x)\right| \\
& \leq \limsup _{h \rightarrow 0}\|\varphi\|_{\infty} \sup _{x \in K}\left|X_{t+h}(x)-X_{t}(x)\right|=0 . \tag{5.23}
\end{align*}
$$

Since $\left\langle X_{t}, \varphi\right\rangle \in C_{c}^{\infty}$ and σ is continuous at t by Remark 2.11, we also see that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{\mathbb{R}^{D}}\left\langle\varphi(x), X_{t}(x)\right\rangle d \sigma_{t+h}(x)=\int_{\mathbb{R}^{D}}\left\langle\varphi(x), X_{t}(x)\right\rangle d \sigma_{t}(x) . \tag{5.24}
\end{equation*}
$$

Since $\varphi \in C_{c}\left(\mathbb{R}^{D}, \mathbb{R}^{D}\right)$ is arbitrary, Equations 5.23 and 5.24 give that $\left\{X_{t+h} \sigma_{t+h}\right\}_{h>0}$ converges weak-* to $\sigma_{t} X_{t}$ as h tends to zero. Corollary 5.15 yields that λ is continuous at t.

QED.

Lemma 5.17 (Lipschitz property of $\left.\bar{\Lambda}_{\sigma_{t}}\left(X_{t}\right)\right)$. Suppose that $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and v is a velocity for σ. Let $X \in C^{1}\left([a, b] \times \mathbb{R}^{D}, \mathbb{R}^{D}\right)$ and $\tilde{C}>0$ be such that

$$
\begin{equation*}
\sup _{t \in[a, b]}\left\|\bar{A}_{\sigma_{t}}\right\|_{\sigma_{t}},\left\|v_{t}\right\|_{\sigma_{t}},\left\|X_{t}\right\|_{\sigma_{t}},\left\|\partial_{t} X_{t}\right\|_{\infty},\left\|\nabla X_{t}\right\|_{\infty} \leq \tilde{C} \tag{5.25}
\end{equation*}
$$

Then $t \rightarrow \bar{\Lambda}_{\sigma_{t}}\left(X_{t}\right)=: \lambda(t)$ is L-Lipschitz for a constant L which is an increasing function of \tilde{C}.

Proof: By Equation 5.25

$$
\begin{align*}
& |X(t+h, y)-X(t, x)| \\
& =\left|\int_{0}^{1}\left(h \partial_{t} X+\nabla X \cdot(y-x)\right)(t+l h, x+l(y-x)) d l\right| \\
& \leq \tilde{C}(|h|+|y-x|) \tag{5.26}
\end{align*}
$$

Let $\gamma_{h} \in \Gamma_{o}\left(\sigma_{t}, \sigma_{t+h}\right)$. We exploit Equation 5.13 where we substitute Y by X_{t+h} and use Equations 5.25 and 5.26 to obtain

$$
\begin{aligned}
& |\lambda(t+h)-\lambda(t)| \\
& \leq\left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}(x), X_{t+h}(y)-X_{t}(x)\right\rangle d \gamma_{h}(x, y)\right| \\
& +2 c(\bar{\Lambda}) W_{2}\left(\sigma_{t}, \sigma_{t+h}\right)| | X_{t+h}| |_{\sigma_{t+h}} \\
& \leq \tilde{C}^{2}\left(|h|+W_{2}\left(\sigma_{t}, \sigma_{t+h}\right)\right)+2 c(\bar{\Lambda}) W_{2}\left(\sigma_{t}, \sigma_{t+h}\right) \tilde{C} \\
& \leq 2|h| \tilde{C}^{2}(1+\tilde{C}+2 c(\bar{\Lambda})),
\end{aligned}
$$

where the last inequality is a consequence of Equation 5.25 and Remark 2.11, which yield $W_{2}\left(\sigma_{t}, \sigma_{t+h}\right) \leq \tilde{C}|h|$. Thus λ is L-Lipschitz with $L:=\tilde{C}^{2}(1+\tilde{C}+2 c(\bar{\Lambda}))$.

QED.
One can identify points where λ is differentiable by making additional assumptions on X. We next show that the set of differentiability of λ contains $(a, b) \backslash \mathcal{N}$. Here, \mathcal{N} is the set of $t \in(a, b)$ for which there exists $\gamma_{h} \in \Gamma_{o}\left(\sigma_{t}, \sigma_{t+h}\right)$ such that $\left(\pi^{1} \times\left(\pi^{2}-\pi^{1}\right) / h\right)_{\#} \gamma_{h}$ fails to converge to $\left(I d \times \bar{v}_{t}\right)_{\#} \sigma_{t}$ in $\mathcal{P}_{2}\left(\mathbb{R}^{D} \times \mathbb{R}^{D}\right)$ as h tends to 0 . The derivative of λ at t will be written in terms of the projection \bar{v}_{t} of v_{t} onto the tangent space $T_{\sigma_{t}} \mathcal{M}$, i.e. $\bar{v}_{t}:=\pi_{\sigma_{t}}\left(v_{t}\right)$.
Lemma 5.18 (Differentiability property of $\bar{\Lambda}_{\sigma_{t}}\left(X_{t}\right)$). Suppose that σ, v and X are as in Lemma 5.17. We further suppose that $X \in C^{2}([a, b] \times$ $\left.\mathbb{R}^{D}, \mathbb{R}^{D}\right)$ and

$$
\begin{equation*}
\left\|\partial_{t t}^{2} X_{t}\right\|_{\infty},\left\|\nabla \partial_{t} X_{t}\right\|_{\infty},\left\|\nabla^{2} X_{t}\right\|_{\infty} \leq \tilde{C} \tag{5.27}
\end{equation*}
$$

If $t \in(a, b) \backslash \mathcal{N}$ then

$$
\begin{align*}
\lambda^{\prime}(t) & =\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}(x), \partial_{t} X_{t}(x)+\nabla X_{t}(x) \cdot \bar{v}_{t}(x)\right\rangle d \sigma_{t}(x) \\
& +\int_{\mathbb{R}^{D}}\left\langle B_{\sigma_{t}}(x) \cdot \bar{v}_{t}(x), X_{t}(x)\right\rangle d \sigma_{t}(x) . \tag{5.28}
\end{align*}
$$

Proof: We shall show that Equation 5.33 holds by establishing a serie of inequalities. First, by Equations 5.25 and 5.27

$$
\begin{equation*}
\left|X(t+h, y)-X(t, x)-h \partial_{t} X(t, x)-\nabla X(t, x) \cdot(y-x)\right| \leq \tilde{C}\left(|h|^{2}+|y-x|^{2}\right) \tag{5.29}
\end{equation*}
$$

We exploit Equation 5.29 to obtain

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left(\left\langle\bar{A}_{\sigma_{t}}(x), X_{t+h}(y)-X_{t}(x)\right\rangle-h\left\langle\bar{A}_{\sigma_{t}}(x), \partial_{t} X_{t}(x)+\nabla X_{t}(x) \cdot \frac{y-x}{h}\right\rangle\right) d \gamma_{h}\right| \\
& \leq \tilde{C}^{2}\left(|h|^{2}+W_{2}^{2}\left(\sigma_{t}, \sigma_{t+h}\right)\right) .
\end{aligned}
$$

This, together with the fact that $t \in(a, b) \backslash \mathcal{N}$ yields

$$
\begin{align*}
& \lim _{h \rightarrow 0} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}(x), \frac{X_{t+h}(y)-X_{t}(x)}{h}\right\rangle d \gamma_{h}(x, y) \tag{5.30}\\
& =\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}(x), \partial_{t} X_{t}(x)+\nabla X_{t}(x) \cdot \bar{v}_{t}(x)\right\rangle d \sigma_{t}(x) .
\end{align*}
$$

By Equations 5.25 and 5.29

$$
|X(t+h, y)-X(t, x)| \leq \tilde{C}\left(|h|+|y-x|+|h|^{2}+|y-x|^{2}\right)
$$

so Hölder's inequality yields

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\sigma_{t}}(x) \cdot(y-x), X_{t+h}(y)-X_{t}(x)\right\rangle d \gamma_{h}(x, y)\right| \\
& \leq \| B_{\sigma_{t}}| |_{\sigma_{t}} \tilde{C} W_{2}\left(\sigma_{t}, \sigma_{t+h}\right) \\
& \cdot\left(|h|+|h|^{2}+W_{2}\left(\sigma_{t}, \sigma_{t+h}\right)+W_{2}^{2}\left(\sigma_{t}, \sigma_{t+h}\right)\right) \\
& \leq c(\bar{\Lambda}) \tilde{C}^{2}|h|\left(|h|+|h|^{2}+\tilde{C}|h|+\tilde{C}^{2}|h|^{2}\right) .
\end{aligned}
$$

To obtain Equation 5.31 we have used Equation 5.9 to bound $\left\|B_{\sigma_{t}}\right\|_{\sigma_{t}}$. As before, we have also used Remark 2.11 to control $W_{2}\left(\sigma_{t}, \sigma_{t+h}\right)$ with $\tilde{C}|h|$. By Equation 5.31 and the fact that $t \in(a, b) \backslash \mathcal{N}$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\sigma_{t}}(x) \cdot \frac{y-x}{h}, X_{t+h}(y)\right\rangle d \gamma_{h}(x, y) \\
& =\lim _{h \rightarrow 0} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\sigma_{t}}(x) \cdot \frac{y-x}{h}, X_{t}(x)\right\rangle d \gamma_{h}(x, y) \\
& =\int_{\mathbb{R}^{D}}\left\langle B_{\sigma_{t}}(x) \cdot \bar{v}_{t}(x), X_{t}(x)\right\rangle d \sigma_{t}(x) .
\end{aligned}
$$

If we substitute ν by σ_{t+h}, μ by σ_{t}, Y by X_{t+h} and X by X_{t} in Equation 5.11 and as before control $W_{2}\left(\sigma_{t}, \sigma_{t+h}\right)$ with $\tilde{C}|h|$, we obtain
$\left.\lim _{h \rightarrow 0} \frac{1}{h} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t+h}}(y)-\bar{A}_{\sigma_{t}}(x)-B_{\sigma_{t}}(x)(y-x), \bar{A}_{\sigma_{t+h}}(y)\right\rangle\right) d \gamma_{h}(x, y)=0$.
We make the same substitution in Equation 5.10 and use Equation 5.32 to obtain
$\lambda^{\prime}(t)=\lim _{h \rightarrow 0} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left(\left\langle\bar{A}_{\sigma_{t}}(x), \frac{X_{t+h}(y)-X_{t}(x)}{h}\right\rangle+\left\langle B_{\sigma_{t}}(x) \cdot \frac{y-x}{h}, X_{t+h}(y)\right\rangle\right) d \gamma_{h}$.
Thanks to Equations 5.33, 5.30 and 5.32 we obtain Equation 5.28. QED.
5.4. Mollification of absolutely continuous paths in \mathcal{M}. Throughout this section we suppose that $\eta_{D}^{\epsilon} \in C^{\infty}\left(\mathbb{R}^{D}\right)$ is a mollifier : $\eta_{D}^{\epsilon}(x)=$ $1 / \epsilon^{D} \eta(x / \epsilon)$, for some bounded symmetric function $\eta \in C^{\infty}\left(\mathbb{R}^{D}\right)$ whose derivatives of all orders are bounded. We also impose that $\eta>0$, $\int_{\mathbb{R}^{D}}|x|^{2} \eta(x) d x<\infty$ and $\int_{\mathbb{R}^{D}} \eta=1$. We fix $\mu \in \mathcal{M}$ and define $f^{\epsilon}(x):=$ $\int_{\mathbb{R}^{D}} \eta_{D}^{\epsilon}(x-y) d \mu(y)$. Observe that $f^{\epsilon} \in C^{\infty}\left(\mathbb{R}^{D}\right)$ is bounded, all its derivatives are bounded and $\int_{\mathbb{R}^{D}} f^{\epsilon}=1$.

We suppose that $\eta_{1}^{\epsilon} \in C^{\infty}(\mathbb{R})$ is a standard mollifier: $\eta_{1}^{\epsilon}(t)=1 / \epsilon \eta_{1}(t / \epsilon)$, for some bounded symmetric function $\eta_{1} \in C^{\infty}(\mathbb{R})$ which is positive on $(-1,1)$ and vanishes outside $(-1,1)$. We also impose that $\int_{\mathbb{R}} \eta_{1}=1$ and assume that $|\epsilon|<1$.

Suppose $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and $v:(a, b) \times \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ is a velocity associated to σ so that $t \rightarrow\left\|v_{t}\right\|_{\sigma_{t}} \in L^{\infty}(a, b)$. Suppose that for each $t \in(a, b)$ there exists $\rho_{t}>0$ such that $\sigma_{t}=\rho_{t} \mathcal{L}^{D}$.

We can extend σ and v in time on an interval larger than $[a, b]$. For instance, set $\tilde{\sigma}_{t}=\sigma_{a}$ for $t \in(a-1, a)$ and set $\tilde{\sigma}_{t}=\sigma_{b}$ for $t \in$ $(b, b+1)$. Observe that $\tilde{\sigma} \in A C_{2}(a-1, b+1 ; \mathcal{M})$ and we have a velocity \tilde{v} associated to $\tilde{\sigma}$ such that $\tilde{v}_{t}=v_{t}$ for $t \in[a, b]$. We can choose \tilde{v} such that $\left\|\tilde{v}_{t}\right\|_{\tilde{\sigma}_{t}}^{2}=0$ for t outside (a, b). In particular, $\int_{a-1}^{b-1}\left\|\tilde{v}_{t}\right\|_{\tilde{\sigma}_{t}}^{2} d t=$ $\int_{a}^{b}\left\|v_{t}\right\|_{\sigma_{t}}^{2} d t$. In the sequel we won't distinguish between $\sigma, \tilde{\sigma}$ on the one hand and v, \tilde{v} on the other hand. This extension becomes useful when we try to define ρ_{t}^{ϵ} as it appears in Equation 5.34. The new density functions are meaningful if we substitute σ by $\tilde{\sigma}$ and impose that $\epsilon \in(0,1)$.

For $\epsilon \in(0,1)$, set

$$
\begin{array}{r}
\rho_{t}^{\epsilon}(x):=\int_{\mathbb{R}} \eta_{1}^{\epsilon}(t-\tau) \rho_{\tau}(x) d \tau, \quad \sigma_{t}^{\epsilon}:=\rho_{t}^{\epsilon} \mathcal{L}^{D}, \tag{5.34}\\
\rho_{t}^{\epsilon}(x) v_{t}^{\epsilon}(x):=\int_{\mathbb{R}} \eta_{1}^{\epsilon}(t-\tau) \rho_{\tau}(x) v_{\tau}(x) d \tau
\end{array}
$$

Note that $\rho_{t}^{\epsilon}(x)>0$ for all $t \in(a, b)$ and $x \in \mathbb{R}^{D}$ and ρ_{t}^{ϵ} is a probability density. Also, $v^{\epsilon}:(a, b) \times \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ is a velocity associated to σ^{ϵ}.

In the sequel we set

$$
C^{2}:=\int_{\mathbb{R}^{D}}|x|^{2} \eta(x) d x, \quad C_{1}=\int_{\mathbb{R}} \eta_{1}(\tau) \tau d \tau, \quad C_{v}:=\sup _{\tau \in(a-1, b+1)}\left\|v_{\tau}\right\|_{\sigma_{\tau}} .
$$

Lemma 5.19. We assume that for each $t \in(a, b)$ there exists $\rho_{t}>0$ such that $\sigma_{t}=\rho_{t} \mathcal{L}^{D}$. Then $\sigma^{\epsilon} \in A C_{2}(a, b ; \mathcal{M})$. For $a<s<t<b$,
(i) $W_{2}\left(\mu, f^{\epsilon} \mathcal{L}^{D}\right) \leq \epsilon C$,
(ii) $\left\|v_{t}^{\epsilon}\right\|_{\sigma_{t}^{\epsilon}} \leq C_{v} \quad$ and \quad (iii) $W_{2}\left(\sigma_{t}^{\epsilon}, \sigma_{t}\right) \leq \epsilon C_{1} C_{v}$.

Proof: We denote by \mathcal{U} the set of pairs (u, v) such that $u, v \in C\left(\mathbb{R}^{D}\right)$ are bounded and $u(x)+v(y) \leq|x-y|^{2}$ for all $x, y \in \mathbb{R}^{D}$. Fix $(u, v) \in \mathcal{U}$. By Fubini's theorem one gets the well-known identity

$$
\begin{equation*}
\int_{\mathbb{R}^{D}} u(x) f^{\epsilon}(x) d x=\int_{\mathbb{R}^{D}} d \mu(y) \int_{\mathbb{R}^{D}} u(x) \eta_{\epsilon}(x-y) d x . \tag{5.35}
\end{equation*}
$$

Since $v(y)=\int_{\mathbb{R}^{D}} v(y) \eta_{\epsilon}(x-y) d x$, Equation 5.35 yields that

$$
\begin{align*}
& \int_{\mathbb{R}^{D}} u(x) f^{\epsilon}(x) d x+\int_{\mathbb{R}^{D}} v(y) d \mu(y) \\
& =\int_{\mathbb{R}^{D}} d \mu(y) \int_{\mathbb{R}^{D}} \eta_{\epsilon}(x-y)(u(x)+v(y)) d x \\
& \leq \int_{\mathbb{R}^{D}} d \mu(y) \int_{\mathbb{R}^{D}} \eta_{\epsilon}(x-y)|x-y|^{2} d x \tag{5.36}\\
& =\int_{\mathbb{R}^{D}} d \mu(y) \int_{\mathbb{R}^{D}} \frac{1}{\epsilon^{D}} \eta\left(\frac{z}{\epsilon}\right)|z|^{2} d z=C^{2} \epsilon^{2} .
\end{align*}
$$

To obtain Equation 5.36 we have used that $(u, v) \in \mathcal{U}$. We have proven that $\int_{\mathbb{R}^{D}} u(x) f(x) d x+\int_{\mathbb{R}^{D}} v(y) d \mu(y) \leq C^{2} \epsilon^{2}$ for arbitrary $(u, v) \in \mathcal{U}$. Thanks to the dual formulation of the Wasserstein distance Equation 2.2, we conclude the proof of (i).

Note that for each $t \in(a, b)$ and $x \in \mathbb{R}^{D}, \eta_{1}^{\epsilon}(t-\tau) \rho_{\tau}(x) / \rho_{t}^{\epsilon}(x)$ is a probability density on \mathbb{R}. Hence, by Jensen's inequality

$$
\begin{aligned}
\left|v_{t}^{\epsilon}(x)\right|^{2} & =\left|1 / \rho_{t}^{\epsilon}(x) \int_{\mathbb{R}} \eta_{1}^{\epsilon}(t-\tau) \rho_{\tau}(x) v_{\tau}(x) d \tau\right|^{2} \\
& \leq 1 / \rho_{t}^{\epsilon}(x) \int_{\mathbb{R}} \eta_{1}^{\epsilon}(t-\tau) \rho_{\tau}(x)\left|v_{\tau}(x)\right|^{2} d \tau
\end{aligned}
$$

We multiply both sides of the previous inequality by $\rho_{t}^{\epsilon}(x)$. We integrate the subsequent inequality over \mathbb{R} and use Fubini's theorem to conclude the proof of (ii).

We use (ii) and Remark 2.11 (i) to obtain that $\sigma^{\epsilon} \in A C_{2}(a, b ; \mathcal{M})$. We have

$$
\begin{aligned}
\int_{\mathbb{R}^{D}} u(x) d \sigma_{t}^{\epsilon}(x) & =\int_{\mathbb{R}^{D}} u(x) d x \int_{\mathbb{R}^{D}} \eta_{1}^{\epsilon}(\tau) \rho_{t-\tau}(x) d \tau \\
& =\int_{\mathbb{R}^{1}} \eta_{1}^{\epsilon}(\tau) d \tau \int_{\mathbb{R}^{D}} u(x) d \sigma_{t-\tau}(x) .
\end{aligned}
$$

Hence, using that $v(y)=\int_{\mathbb{R}} \eta_{1}^{\epsilon}(\tau) v(y) d \tau$, we obtain
$\int_{\mathbb{R}^{D}} u(x) d \sigma_{t}^{\epsilon}(x)+\int_{\mathbb{R}^{D}} v(y) d \sigma_{t}(y)=\int_{\mathbb{R}^{2}} \eta_{1}^{\epsilon}(\tau) d \tau\left(\int_{\mathbb{R}^{D}} u d \sigma_{t-\tau}+\int_{\mathbb{R}^{D}} v d \sigma_{\tau}\right)$

$$
\begin{equation*}
\leq \int_{\mathbb{R}} \eta_{1}^{\epsilon}(\tau) W_{2}^{2}\left(\sigma_{t-\tau}, \sigma_{t}\right) d \tau \tag{5.38}
\end{equation*}
$$

$$
\begin{equation*}
\leq \int_{\mathbb{R}} \eta_{1}^{\epsilon}(\tau) \tau^{2} C_{v}^{2} d \tau=\epsilon^{2} C_{1} C_{v}^{2} \tag{5.39}
\end{equation*}
$$

To obtain Equation 5.38 we have used the dual formulation of the Wasserstein distance Equation 2.2 and the fact that $(u, v) \in \mathcal{U}$. We have used Remark 2.11 to obtain Equation 5.39. Since $\int_{\mathbb{R}^{D}} u d \sigma_{t}^{\epsilon}+$ $\int_{\mathbb{R}^{D}} v d \sigma_{t} \leq \epsilon C C_{v}$ for arbitrary $(u, v) \in \mathcal{U}$, we conclude that (iii) holds. QED.

Remark 5.20. Assume that for each $t \in(a, b)$ there exists $\rho_{t}>0$ such that $\sigma_{t}=\rho_{t} \mathcal{L}^{D}$. Let $\phi \in C_{c}\left(\mathbb{R}^{D}\right)$. Setting $I_{\phi}(t):=\int_{\mathbb{R}^{D}}\left\langle\phi, v_{t}\right\rangle \rho_{t} d \mathcal{L}^{D}$, we have

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{D}}\left\langle\phi, v_{t}^{\epsilon}\right\rangle \rho_{t}^{\epsilon} d \mathcal{L}^{D}\right|=\left|\eta_{1}^{\epsilon} * I_{\phi}(t)\right| \leq\|\phi\|_{\infty} C_{v} . \tag{5.40}
\end{equation*}
$$

Corollary 5.21. Suppose that for each $t \in(a, b)$ there exists $\rho_{t}>0$ such that $\sigma_{t}=\rho_{t} \mathcal{L}^{D}$. Then, for each $t \in[a, b],\left\{\sigma_{t}^{\epsilon}\right\}_{\epsilon>0}$ converges to σ_{t} in \mathcal{M} as ϵ tends to zero. For \mathcal{L}^{1}-almost every $t \in[a, b],\left\{\sigma_{t}^{\epsilon} v_{t}^{\epsilon}\right\}_{\epsilon>0}$ converges weak-* to $\sigma_{t} v_{t}$ as ϵ tends to zero.

Proof: By Lemma 5.19 (iii), $\left\{\sigma_{t}^{\epsilon}\right\}_{\epsilon>0}$ converges to σ_{t} in \mathcal{M} as ϵ tends to zero.

Let \mathcal{C} be a countable family in $C_{c}\left(\mathbb{R}^{D}\right)$. For each $\phi \in C_{c}\left(\mathbb{R}^{D}\right)$, the set of Lebesgue points of I_{ϕ} is a set of full measure in $[a, b]$. For these points $\eta_{1}^{\epsilon} * I_{\phi}(t)$ tends to $I_{\phi}(t)$ as ϵ tends to zero. Thus there is a set S of full measure in $[a, b]$ such that for all $\phi \in \mathcal{C}$ and all $t \in S, \eta_{1}^{\epsilon} * I_{\phi}(t)$ tends to $I_{\phi}(t)$ as ϵ tends to zero. The $S^{\prime \prime}$ of Lebesgue points of V is a set of full measure in $[a, b]$. Fix $\varphi \in C_{c}\left(\mathbb{R}^{D}\right)$ and choose $\delta>0$ arbitrary. Let $\phi \in \mathcal{C}$ be such that $\|\varphi-\phi\|_{\infty} \leq \delta$. Note that

$$
\left|\eta_{1}^{\epsilon} * I_{\varphi}(t)-I_{\varphi}(t)\right| \leq\left|\eta_{1}^{\epsilon} * I_{\phi}(t)-I_{\phi}(t)\right|+\left|\eta_{1}^{\epsilon} * I_{\phi-\varphi}(t)\right|+\left|I_{\phi-\varphi}(t)\right| .
$$

We use inequality 5.40 to conclude that

$$
\left|\eta_{1}^{\epsilon} * I_{\varphi}(t)-I_{\varphi}(t)\right| \leq\left|\eta_{1}^{\epsilon} * I_{\phi}(t)-I_{\phi}(t)\right|+2 \delta C_{v} .
$$

If $t \in S \cap S^{\prime}$, the previous inequality gives that $\lim \sup _{\epsilon \rightarrow 0} \mid \eta_{1}^{\epsilon} * I_{\varphi}(t)-$ $I_{\varphi}(t) \mid \leq 2 \delta C_{v}$. Since $\delta>0$ is arbitrary we conclude that $\lim _{\epsilon \rightarrow 0} \mid \eta_{1}^{\epsilon} *$ $I_{\varphi}(t)-I_{\varphi}(t) \mid=0$.

QED.

Corollary 5.22. Suppose $\bar{\sigma} \in A C_{2}(a, b ; \mathcal{M})$ for all $a<b, \bar{v}$ is a velocity associated to $\bar{\sigma}$ and $\infty>C:=\sup _{t \in[a, b]}\left\|\bar{v}_{t}\right\|_{\bar{\sigma}_{t}}$. Define

$$
\begin{gathered}
f_{t}^{r}(x):=\int_{\mathbb{R}^{D}} \eta_{D}^{r}(x-y) d \bar{\sigma}_{t}(y), \quad \bar{\sigma}_{t}^{r}:=f_{t}^{r} \mathcal{L}^{D}, \\
f_{t}^{r}(x) \bar{v}_{t}^{r}(x):=\int_{\mathbb{R}^{D}} \eta_{D}^{r}(x-y) \bar{v}_{t}(y) d \bar{\sigma}_{t}(y) .
\end{gathered}
$$

As in Equation 5.34, we define for $0<\epsilon<1$,

$$
\begin{gathered}
\rho_{t}^{\epsilon, r}(x):=\int_{\mathbb{R}} \eta_{1}^{\epsilon}(t-\tau) f_{\tau}^{r}(x) d \tau, \quad \sigma_{t}^{\epsilon, r}:=\rho^{\epsilon, r} \mathcal{L}^{D}, \\
\rho_{t}^{\epsilon, r}(x) v_{t}^{\epsilon, r}(x):=\int_{\mathbb{R}} \eta_{1}^{\epsilon}(t-\tau) f_{\tau}^{r}(x) v_{\tau}(x) d \tau
\end{gathered}
$$

Then,
(i) \bar{v}^{r} is a velocity associated to $\bar{\sigma}^{r}$ and, for each $t \in(a, b),\left\{\bar{\sigma}_{t}^{r}\right\}_{r}$ converges to $\bar{\sigma}_{t}$ in \mathcal{M} as r tends to zero. For \mathcal{L}^{1}-almost every $t \in(a, b)$, $\left\|\bar{v}_{t}^{r}\right\|_{\bar{\sigma}_{t}^{r}} \leq C$ and $\left\{\bar{v}_{t}^{r} \bar{\sigma}_{t}^{r}\right\}_{r>0}$ converges weak-* to $\bar{v}_{t} \bar{\sigma}_{t}$ as r tends to zero. (ii) $v^{\epsilon, r}$ is a velocity associated to $\sigma^{\epsilon, r}$ and, for each $t \in(a, b),\left\{\bar{\sigma}_{t}^{\epsilon, r}\right\}_{\epsilon}$ converges to $\bar{\sigma}_{t}^{r}$ in \mathcal{M} as ϵ tends to zero. For every $t \in(a, b),\left\|\bar{v}_{t}^{\epsilon, r}\right\|_{\bar{\sigma}_{t}^{\epsilon, r}} \leq$ C while for \mathcal{L}^{1}-almost every $t \in(a, b),\left\{\bar{v}_{t}^{\epsilon, r} \bar{\sigma}_{t}^{\epsilon, r}\right\}_{r>0}$ converges weak-* to $\bar{v}_{t}^{r} \bar{\sigma}_{t}^{r}$ as ϵ tends to zero.
(iii) The function $t \rightarrow \bar{\Lambda}_{\sigma_{t}^{\epsilon, r}}\left(v_{t}^{\epsilon, r}\right)$ is continuous while $t \rightarrow \bar{\Lambda}_{\bar{\sigma}_{t}}\left(\bar{v}_{t}\right)$ is measurable on $(0, T)$.
(iv) Suppose in addition that σ and v are time-periodic:

$$
\bar{\sigma}_{t}=\bar{\sigma}_{t-[t / T] T}, \quad \bar{v}_{t}=\bar{v}_{t-[t / T] T} .
$$

Here [.] stands for the greatest integer function. Then $\sigma_{0}^{\epsilon, r}=\sigma_{T}^{\epsilon, r}$ and $v_{0}^{\epsilon, r}=v_{T}^{\epsilon, r}$.

Proof: It is well known that $\left\|\bar{v}_{t}^{r}\right\|_{\bar{\sigma}_{t}^{r}} \leq\left\|\bar{v}_{t}\right\|_{\bar{\sigma}_{t}} \leq C$ (see [4] Lemma 8.1.10) so, by Remark 2.11 (i), $\bar{\sigma} \in A C_{2}(a, b ; \mathcal{M})$. One can readily check that \bar{v}^{r} is a velocity associated to $\bar{\sigma}^{r}$. Lemma 5.19 shows that, for each $t \in(a, b),\left\{\bar{\sigma}_{t}^{r}\right\}_{r}$ converges to $\bar{\sigma}_{t}$ in \mathcal{M} as r tends to zero. Let $\varphi \in C_{c}\left(\mathbb{R}^{D}, \mathbb{R}^{D}\right)$. Set $\varphi^{r}:=\eta_{D}^{r} * \varphi$. Since $\left\{\varphi^{r}\right\}_{r>0}$ converges uniformly to φ,

$$
\lim _{r \rightarrow 0} \int_{\mathbb{R}^{D}}\left\langle\varphi, \bar{v}_{t}^{r}\right\rangle d \bar{\sigma}_{t}^{r}=\int_{\mathbb{R}^{D}}\left\langle\bar{v}_{t}, \varphi^{r}\right\rangle d \bar{\sigma}_{t} .
$$

Thus $\left\{\bar{v}_{t}^{r} \bar{\sigma}_{t}^{r}\right\}_{r>0}$ converges weak-* to $\bar{v}_{t} \bar{\sigma}_{t}$ as r tends to zero. This proves (i).

We next fix $r>0$. For a moment we won't display the dependence in r. For instance we write v^{ϵ} instead of $v_{t}^{\epsilon, r}$ as in Equation 5.34. Note that $\rho^{\epsilon} \in C^{1}\left([a, b] \times \mathbb{R}^{D}\right), \rho^{\epsilon}>0$ and ρ_{t}^{ϵ} is a probability density. Also $v_{t}^{\epsilon} \in C^{1}\left([a, b] \times \mathbb{R}^{D}, \mathbb{R}^{D}\right)$ and v^{ϵ} is a velocity associated to σ^{ϵ}. Fix $t \in[\bar{a}, b] \subset(a, b)$. Lemma 5.19 gives that $\left\|v_{t}^{\epsilon}\right\|_{\sigma_{t}^{\epsilon}} \leq C$ for all $\epsilon>0$ small enough. By Corollary $5.21\left\{v_{t}^{\epsilon} \sigma_{t}^{\epsilon}\right\}_{\epsilon>0}$ converges weak-* to $v_{t} \sigma_{t}$ as ϵ tends to zero. This proves (ii).

By Lemma 5.16, $t \rightarrow \bar{\Lambda}_{\sigma_{t}^{\epsilon}}\left(v_{t}^{\epsilon}\right)$ is continuous in (a, b). Hence by (ii) $t \rightarrow$ $\bar{\Lambda}_{\bar{\sigma}_{t}^{r}}\left(\bar{v}_{t}^{r}\right)$ is measurable as a pointwise limit of measurable functions. We
then use (i) to conclude that $t \rightarrow \bar{\Lambda}_{\bar{\sigma}_{t}}\left(\bar{v}_{t}\right)$ is measurable as a pointwise limit of measurable functions. This proves (iii). The proof of (iv) is straightforward.

QED.
5.5. Integration of regular pseudo 1-forms. We can now study the properties of regular pseudo 1 -forms with respect to integration.

Corollary 5.23. Let $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and let v be a velocity associated to σ. Suppose $t \rightarrow\left\|v_{t}\right\|_{\sigma_{t}}$ is square integrable on (a, b). Then $t \rightarrow \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)$ is measurable and square integrable on (a, b).

Proof: Let $\bar{\sigma}$ be the reparametrization of σ as introduced in Remark 2.13 and let \bar{v} be the associated velocity. By Corollary 5.22 (iii), because $\sup _{s \in[0, L]}\left\|\bar{v}_{s}\right\|_{\bar{\sigma}_{s}} \leq 1$, we have that $s \rightarrow \bar{\Lambda}_{\bar{\sigma}_{s}}\left(\bar{v}_{s}\right)$ is measurable. But $\bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)=\dot{S}(t) \bar{\Lambda}_{\bar{\sigma}_{S(t)}}\left(\bar{v}_{S(t)}\right)$. Thus $t \rightarrow \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)$ is measurable.

By Corollary 5.10 there exists a constant C_{σ} independent of t such that $\left\|\bar{A}_{\sigma_{t}}\right\|_{\sigma_{t}} \leq C_{\sigma}$ for all $t \in[a, b]$. Thus

$$
\left|\bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)\right|=\left|\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}, v_{t}\right\rangle d \sigma_{t}\right| \leq\left\|\bar{A}_{\sigma_{t}}\right\|\left\|_{\sigma_{t}}\right\| v_{t}\left\|_{\sigma_{t}} \leq C_{\sigma}\right\| v_{t} \|_{\sigma_{t}} .
$$

Since $t \rightarrow\left\|v_{t}\right\|_{\sigma_{t}}$ is square integrable, the previous inequality yields the proof.

QED.

Corollary 5.24. Suppose $\left\{\sigma^{r}\right\}_{0 \leq r \leq c} \subset A C_{2}(a, b ; \mathcal{M}), v^{r}$ is a velocity associated to σ^{r} and $\infty>C:=\sup _{(t, r) \in E}\left\|v_{t}^{r}\right\|_{\sigma_{t}^{r}}$ where $E:=$ $[a, b] \times[0, c]$. Suppose that, for \mathcal{L}^{1}-almost every $t \in(a, b),\left\{v_{t}^{r} \sigma_{t}^{r}\right\}_{r>0}$ converges weak-* to $v_{t} \sigma_{t}$ and $\left\{\sigma_{t}^{r}\right\}_{r>0}$ converges in \mathcal{M} to σ_{t} as r tends to zero. If $(t, r) \rightarrow \sigma_{t}^{r}$ is continuous at every $(t, 0) \in[a, b] \times\{0\}$ then $\lim _{r \rightarrow 0} \int_{a}^{b} \bar{\Lambda}_{\sigma^{r}}\left(v^{r}\right) d t=\int_{a}^{b} \bar{\Lambda}_{\sigma}(v) d t$. Here we have set $\sigma_{t}:=\sigma_{t}^{0}$.

Proof: By Lemma 5.10 we may assume without loss of generality that $\left\|\bar{A}_{\sigma_{t}^{r}}\right\|_{\sigma_{t}^{r}}$ is bounded on E by a constant \bar{C} independent of $(t, r) \in E$. We obtain

$$
\begin{equation*}
\sup _{(t, r) \in E}\left|\bar{\Lambda}_{\sigma_{t}^{r}}\left(v_{t}^{r}\right)\right| \leq \sup _{(t, r) \in E}\left\|\bar{A}_{\sigma_{t}^{r}}\right\|\left\|_{\sigma_{t}^{r}}\right\| v_{t}^{r} \|_{\sigma_{t}^{r}} \leq \bar{C} C . \tag{5.41}
\end{equation*}
$$

Corollary 5.15 ensures that $\lim _{r \rightarrow 0} \bar{\Lambda}_{\sigma_{t}^{r}}\left(v_{t}^{r}\right)=\bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)$ for \mathcal{L}^{1}-almost every $t \in[a, b]$. This, together with Equation 5.41 shows that, as r tends to 0 , the sequence of functions $t \rightarrow \bar{\Lambda}_{\sigma_{t}^{r}}\left(v_{t}^{r}\right)$ converges to the function $t \rightarrow \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)$ in $L^{1}(a, b)$. This proves the corollary. QED.

Definition 5.25. Let $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and let v be a velocity associated to σ. Suppose $t \rightarrow\left\|v_{t}\right\|_{\sigma_{t}}$ is square integrable on (a, b). By Corollary 5.23, $t \rightarrow \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)$ is also square integrable on (a, b). It is thus meaningful to calculate the integral $\int_{a}^{b} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t$.

We will call $\int_{a}^{b} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t$ the integral of $\bar{\Lambda}$ along (σ, v). When v is the velocity of minimal norm we will write this simply as $\int_{a}^{b} \bar{\Lambda}$ and call it the integral of $\bar{\Lambda}$ along σ.

Remark 5.26. Suppose that $r:[c, d] \rightarrow[a, b]$ is invertible and Lipschitz. Define $\bar{\sigma}_{s}=\sigma_{r(s)}$. Then $\bar{\sigma} \in A C_{2}(c, d ; \mathcal{M})$ and $\bar{v}_{s}(x)=\dot{r}(s) v_{r(s)}(x)$ is a velocity for $\bar{\sigma}$. Furthermore, $\int_{c}^{d} \bar{\Lambda}_{\bar{\sigma}_{t}}\left(\bar{v}_{t}\right) d t=\int_{a}^{b} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t$.
Proof: Let $\beta \in L^{2}(a, b)$ be as in Definition 2.10. Then

$$
W_{2}\left(\sigma_{r(s+h)}, \sigma_{r(s)}\right) \leq\left|\int_{r(s)}^{r(s+h)} \beta(t) d t\right|=\left|\int_{s}^{s+h} \bar{\beta}(\tau) d \tau\right|,
$$

where $\bar{\beta}(s):=|\dot{r}(s)| \beta(r(s))$. Because $\bar{\beta} \in L^{2}(c, d)$ we conclude that $\bar{\sigma} \in$ $A C_{2}(c, d ; \mathcal{M})$. Direct computations give that, for \mathcal{L}^{1} a.e. $s \in(c, d)$,

$$
\lim _{h \rightarrow 0} W_{2}\left(\sigma_{r(s+h)}, \sigma_{r(s)}\right) /|h|=|\dot{r}(s)|\left|\sigma^{\prime}\right|(r(s))
$$

Thus $\left|\bar{\sigma}^{\prime}\right|(s)=|\dot{r}(s)|\left|\sigma^{\prime}\right|(r(s))$. Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$ and let v be a velocity for σ (see Proposition 2.12). The chain rule shows that, in the sense of distributions,

$$
\frac{d}{d s} \int_{\mathbb{R}^{D}} \phi d \sigma_{r(s)}=\dot{r}(s)\left\langle\nabla \phi, v_{r(s)}\right\rangle_{\sigma_{r(s)}}=\left\langle\nabla \phi, \bar{v}_{s}\right\rangle_{\bar{\sigma}_{s}}
$$

where $\bar{v}_{s}(x)=\dot{r}(s) v_{r(s)}(x)$. Thus \bar{v} is a velocity for $\bar{\sigma}$. Using the linearity of $\bar{\Lambda}$ we have

$$
\int_{c}^{d} \bar{\Lambda}_{\bar{\sigma}_{s}}\left(\bar{v}_{s}\right) d s=\int_{c}^{d} \dot{r}(s) \bar{\Lambda}_{\sigma_{r(s)}}\left(v_{r(s)}\right) d s=\int_{a}^{b} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t
$$

This concludes the proof.
QED.
5.6. Green's formula for annuli, and the cohomology of regular pseudo 1-forms. Let $\sigma \in A C_{2}(a, b ; \mathcal{M})$ and let v be its velocity of minimal norm (see Proposition 2.12). The following proposition is extracted from [4] Theorem 8.3.1 and Proposition 8.4.5.
Proposition 5.27. Let \mathcal{N}_{1} be the set of t such that v_{t} fails to be in $T_{\sigma_{t}} \mathcal{M}$. Let \mathcal{N}_{2} be the set of $t \in[a, b]$ such that $\left(\pi^{1} \times\left(\pi^{2}-\pi^{1}\right) / h\right)_{\#} \eta_{h}$ fails to converge to $\left(I d \times v_{t}\right)_{\sigma_{t}}$ in the Wasserstein space $\mathcal{P}_{2}\left(\mathbb{R}^{D} \times \mathbb{R}^{D}\right)$,
for some $\eta_{h} \in \Gamma_{o}\left(\sigma_{t}, \sigma_{t+h}\right)$. Let \mathcal{N} be the union of \mathcal{N}_{1} and \mathcal{N}_{2}. Then $\mathcal{L}^{1}(\mathcal{N})=0$.

As in Section 5.3, for $r \in(0,1)$ and $s \in[r, 1]$ we define

$$
\begin{gathered}
D_{s} z:=s z, \quad \sigma(s, t)=\sigma_{t}^{s}:=D_{s \#} \sigma_{t} \\
w(s, t, \cdot)=w_{t}^{s}(z):=\frac{z}{s}=D_{s}^{-1} z, \quad v(s, t, \cdot)=v_{t}^{s}:=D_{s *} v_{t} .
\end{gathered}
$$

According to Lemma 4.2, for each $s \in[r, 1], \sigma(s, \cdot) \in A C_{2}(a, b ; \mathcal{M})$ admits $v(s, \cdot)$ as a velocity. For each t and $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{D}\right)$, in the sense of distributions,

$$
\begin{aligned}
\frac{d}{d s} \int_{\mathbb{R}^{D}} \phi d \sigma_{t}^{s} & =\frac{d}{d s} \int_{\mathbb{R}^{D}} \phi(s x) d \sigma_{t}(x) \\
& =\int_{\mathbb{R}^{D}}\langle\nabla \phi(s x), x\rangle d \sigma_{t}(x)=\int_{\mathbb{R}^{D}}\left\langle\nabla \phi, w_{t}^{s}\right\rangle d \sigma_{t}^{s} .
\end{aligned}
$$

Thus $w(\cdot, t)$ is a velocity for $\sigma(\cdot, t)$. We assume that

$$
\left\|\sigma^{\prime}\right\|_{\infty}:=\sup _{t \in[a, b]}\left\|v_{t}\right\|_{\sigma_{t}}<\infty
$$

By Remark 2.11,

$$
c_{\sigma}^{0}:=\sup _{t \in[a, b]} W_{2}\left(\sigma_{t}, \delta_{0}\right)<\infty .
$$

By the fact that $D_{s \#} \sigma_{t}=\sigma_{t}^{s}$ we have

$$
\begin{equation*}
W_{2}^{2}\left(\sigma_{t}^{s}, \delta_{0}\right)=s^{2} W_{2}^{2}\left(\sigma_{t}, \delta_{0}\right) \leq s^{2} c_{\sigma}^{0} \leq \bar{C}_{\sigma} . \tag{5.42}
\end{equation*}
$$

Here, we are free to choose \bar{C}_{σ} to be any constant greater than c_{σ}^{0}.
Remark 5.28. Note that $(1+h / s) I d$ pushes σ_{t}^{s} forward to σ_{t}^{s+h} and is the gradient of a convex function. Thus

$$
\gamma^{h}:=(I d \times(1+h / s) I d)_{\#} \sigma_{t}^{s} \in \Gamma_{o}\left(\sigma_{t}^{s}, \sigma_{t}^{s+h}\right)
$$

For γ^{h}-almost every $(x, y) \in \mathbb{R}^{D} \times \mathbb{R}^{D}$ we have $y=(1+h / s) x$, so

$$
\begin{equation*}
v_{t}^{s+h}(y)=(s+h) v_{t}\left(\frac{y}{s+h}\right)=\left(1+\frac{h}{s}\right) v_{t}^{s}\left(\frac{s y}{s+h}\right)=\left(1+\frac{h}{s}\right) v_{t}^{s}(x) . \tag{5.43}
\end{equation*}
$$

Using the definition of σ_{t}^{s} and v_{t}^{s} we obtain the identities

$$
\begin{equation*}
\|I d\|_{\sigma_{t}^{s}}=s\|I d\|_{\sigma_{t}} \leq s \bar{C}_{\sigma}, \quad\left\|v_{t}^{s}\right\|_{\sigma_{t}^{s}}=s\left\|v_{t}\right\|_{\sigma_{t}} \leq s\left\|\sigma^{\prime}\right\|_{\infty} \tag{5.44}
\end{equation*}
$$

We use the first identity in Equation 5.44 and the fact that $(1+h / s) I d$ pushes σ_{t}^{s} forward to σ_{t}^{s+h} to obtain

$$
\begin{equation*}
W_{2}^{2}\left(\sigma_{t}^{s}, \sigma_{t}^{s+h}\right)=\frac{h^{2}}{s^{2}}\|I d\|_{\sigma_{t}^{s}}^{2}=h^{2}\|I d\|_{\sigma_{t}}^{2}=h^{2} W_{2}^{2}\left(\sigma_{t}, \delta_{0}\right) \leq h^{2} \bar{C}_{\sigma}^{2} \tag{5.45}
\end{equation*}
$$

Set

$$
V(s, t):=\bar{\Lambda}_{\sigma_{t}^{s}}\left(v_{t}^{s}\right), \quad W(s, t):=\bar{\Lambda}_{\sigma_{t}^{s}}\left(w_{t}^{s}\right)
$$

Lemma 5.29. For each $t \in(a, b) \backslash \mathcal{N}$, the function $V(t, \cdot)$ is differentiable on $(r, 1)$ and its derivative is bounded by a constant $L_{1}(r)$ depending only on σ and r. Furthermore
$\partial_{s} V(s, t)=\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s}}(x), \frac{v_{t}^{s}(x)}{s}\right\rangle d \sigma_{t}^{s}(x)+\int_{\mathbb{R}^{D}}\left\langle B_{\sigma_{t}^{s}}(x) w_{t}^{s}(x), v_{t}^{s}(x)\right\rangle d \sigma_{t}^{s}(x)$.
Proof: Let $C_{\sigma}(r)$ be as in Corollary 5.13 and let \bar{C}_{σ} be as in Equation 5.42. We use Equations 5.13, 5.43 and then Hölder's inequality to obtain
$|V(s+h, t)-V(s, t)| \leq \frac{h}{s}| | \bar{A}_{\sigma_{t}^{s}}\left\|_{\sigma_{t}^{s}}\right\| v_{t}^{s}| |_{\sigma_{t}^{s}}+2 c(\bar{\Lambda}) W_{2}\left(\sigma_{t}^{s}, \sigma_{t}^{s+h}\right)| | v_{t}^{s+h} \|_{\sigma_{t}^{s+h}}$.
We combine Equations 5.44, 5.45 and 5.46 to conclude that
(5.47) $|V(s+h, t)-V(s, t)| \leq h C_{\sigma}(r)\left\|\sigma^{\prime}\right\|_{\infty}+2 h c(\bar{\Lambda}) \bar{C}_{\sigma}(s+h)\left\|\sigma^{\prime}\right\|_{\infty}$.

This proves that $V(\cdot, t)$ is Lipschitz on $(r, 1)$ and that its derivative is bounded by a constant $L_{1}(r)$. As in Remark 5.8,
(5.48) $\lim _{h \rightarrow 0} \frac{V(s+h, t)-V(s, t)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s}}(x), \frac{v_{t}^{s+h}(y)-v_{t}^{s}(x)}{h}\right\rangle d \gamma^{h} \\
& +\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\sigma_{t}^{s}}(x) \frac{y-x}{h}, v_{t}^{s+h}(y)\right\rangle d \gamma^{h} \\
& +\frac{1}{h} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s+h}}(y)-\bar{A}_{\sigma_{t}^{s}}(x)-B_{\sigma_{t}^{s}}(x)(y-x), v_{t}^{s+h}(y)\right\rangle d \gamma^{h} .
\end{aligned}
$$

By Equation 5.11, the last inequality in Equation 5.44 and Equation 5.45 we have
$\lim _{h \rightarrow 0} \frac{1}{h} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s+h}}(y)-\bar{A}_{\sigma_{t}^{s}}(x)-B_{\sigma_{t}^{s}}(x)(y-x), v_{t}^{s+h}(y)\right\rangle d \gamma^{h}(x, y)=0$.

We use Equations 5.43, 5.48, 5.49 and the fact that, for $\gamma_{t}^{s, h}$-almost every $(x, y) \in \mathbb{R}^{D} \times \mathbb{R}^{D}, y=(1+h / s) x$ to conclude that

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{V(s+h, t)-V(s, t)}{h} \\
& =\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s}}(x), \frac{v_{t}^{s}(x)}{s}\right\rangle d \sigma_{t}^{s}(x)+\lim _{h \rightarrow 0} \int_{\mathbb{R}^{D}}\left\langle B_{\sigma_{t}^{s}}(x) \frac{x}{s},\left(1+\frac{h}{s}\right) v_{t}^{s}(x)\right\rangle d \sigma_{t}^{s}(x) \\
& =\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s}}(x), \frac{v_{t}^{s}(x)}{s}\right\rangle d \sigma_{t}^{s}(x)+\int_{\mathbb{R}^{D}}\left\langle B_{\sigma_{t}^{s}}(x) w_{t}^{s}(x), v_{t}^{s}(x)\right\rangle d \sigma_{t}^{s}(x) .
\end{aligned}
$$

This proves the lemma. QED.

Lemma 5.30. For each $s \in[r, 1]$ and $t \in(a, b) \backslash \mathcal{N}$, the function $W(s, \cdot)$ is differentiable at t and its derivative is bounded by a constant $L_{2}(r)$ depending only on σ and r. Furthermore
$\partial_{t} W(s, t)=\int_{\mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}^{s}}(x), \frac{v_{t}^{s}(x)}{s}\right\rangle d \sigma_{t}^{s}(x)+\int_{\mathbb{R}^{D}}\left\langle w_{t}^{s}(x), B_{\sigma_{t}^{s}}(x) v_{t}^{s}(x)\right\rangle d \sigma_{t}^{s}(x)$.
Proof: We would like to apply Lemmas 5.17 and 5.18 with X_{t} substituted by w_{t}^{s} and σ_{t} substituted by σ_{t}^{s}. It suffices to show that if $t \in(a, b) \backslash \mathcal{N}$ and $\gamma_{h}^{s} \in \Gamma_{o}\left(\sigma_{t}^{s}, \sigma_{t+h}^{s}\right)$ then $\left(\pi^{1} \times\left(\pi^{2}-\pi^{1}\right) / h\right)_{\#} \gamma_{h}^{s}$ converges to $\left(I d \times v_{t}^{s}\right)_{\sigma_{t}^{s}}$ in $\mathcal{P}_{2}\left(\mathbb{R}^{D} \times \mathbb{R}^{D}\right)$ as h tends to 0 . Set

$$
\gamma_{h}:=\left(D_{s}^{-1} \times D_{s}^{-1}\right)_{\#} \gamma_{h}^{s} .
$$

Since

$$
\pi^{1} \circ\left(D_{s}^{-1} \times D_{s}^{-1}\right)=D_{s}^{-1} \circ \pi^{1} \quad \text { and } \quad \pi^{2} \circ\left(D_{s}^{-1} \times D_{s}^{-1}\right)=D_{s}^{-1} \circ \pi^{2}
$$

we conclude that $\gamma_{h} \in \Gamma\left(\sigma_{t}, \sigma_{t+h}\right)$. By the fact that the support of γ_{h}^{s} is cyclically monotone, we have that the support of γ_{h} is also cyclically monotone. Hence $\gamma_{h} \in \Gamma_{o}\left(\sigma_{t}, \sigma_{t+h}\right)$. We have

$$
\begin{aligned}
& \left(\pi^{1} \times \frac{\pi^{2}-\pi^{1}}{h}\right)_{\#} \gamma_{h}^{s} \\
& =\left(D_{s} \times D_{s}\right)_{\#}\left(\left(\frac{\pi^{2}-\pi^{1}}{h}\right)_{\#} \gamma_{h}\right) \rightarrow\left(D_{s} \times D_{s}\right) \circ\left(I d \times v_{t}\right)_{\#} \sigma_{t} \\
& =\left(I d \times v_{t}^{s}\right)_{\#} \sigma_{t}^{s} .
\end{aligned}
$$

QED.

Corollary 5.31. For each $s \in(r, 1)$ and $t \in(a, b) \backslash \mathcal{N}$ we have

$$
\partial_{t}\left(\bar{\Lambda}_{\sigma_{t}^{s}}\left(w_{t}^{s}\right)\right)-\partial_{s}\left(\bar{\Lambda}_{\sigma_{t}^{s}}\left(v_{t}^{s}\right)\right)=d \bar{\Lambda}_{\sigma_{t}^{s}}\left(v_{t}^{s}, w_{t}^{s}\right)
$$

Proof: This corollary is a direct consequence of Lemmas 5.12, 5.29 and 5.30.

QED.

Remark 5.32. Notice that, unlike the setting of Proposition 5.2, in Lemma 5.29 and Corollary 5.31 we don't assume that $v \in C^{1}((r, 1] \times$ $\left.(a, b) \times \mathbb{R}^{D}, \mathbb{R}^{D}\right)$. Although possibly neither ∇v_{t}^{s} nor $\partial_{s} v_{t}^{s}$ exist, Equation 5.43 ensures that $\left\|v_{t}^{s+h} \circ \pi^{2}-v_{t}^{s} \circ \pi^{1}\right\|_{\gamma^{h}} \leq h\left\|\sigma^{\prime}\right\|_{\infty}$. That inequality was crucial in the proof of Lemma 5.29.

Theorem 5.33 (Green's formula on the annulus). Consider in \mathcal{M} the surface $S(s, t)=D_{s \#} \sigma$ for $(s, t) \in[r, 1] \times[0, T]$ and its boundary ∂S which is the union of the negatively oriented curves $S(r, \cdot), S(\cdot, T)$ and the positively oriented curves $S(1, \cdot), S(\cdot, 0)$. Then

$$
\int_{S} d \bar{\Lambda}=\int_{\partial S} \bar{\Lambda}
$$

Proof: We use Corollary 5.31 to obtain

$$
\begin{aligned}
& \int_{S} d \bar{\Lambda}=\int_{0}^{T} d t \int_{r}^{1} d \bar{\Lambda}_{S(s, t)}\left(v_{t}^{s}, w_{t}^{s}\right) d s \\
& =\int_{0}^{T} d t \int_{r}^{1}\left[\partial_{t}\left(\bar{\Lambda}_{S(s, t)}\left(w_{t}^{s}\right)\right)-\partial_{s}\left(\bar{\Lambda}_{S(s, t)}\left(v_{t}^{s}\right)\right)\right] d s \\
& =\int_{r}^{1}\left(\bar{\Lambda}_{S(s, T)}\left(w_{T}^{s}\right)-\bar{\Lambda}_{S(s, 0)}\left(w_{0}^{s}\right)\right) d s-\int_{0}^{T}\left(\bar{\Lambda}_{S(1, t)}\left(v_{t}^{1}\right)-\bar{\Lambda}_{S(r, t)}\left(v_{t}^{r}\right)\right) d t \\
& =\int_{\partial S} \bar{\Lambda}
\end{aligned}
$$

QED.

Corollary 5.34. If we further assume that $\bar{\Lambda}$ is a closed pseudo 1 -form and that $\sigma_{0}=\sigma_{T}$, then $\int_{0}^{T} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t=0$.

Proof: For $s \in[r, 1]$ define

$$
l(s)=\int_{0}^{T} \bar{\Lambda}_{S(s, t)}\left(v_{t}^{s}\right) d t, \quad \bar{l}(t)=\int_{r}^{1} \bar{\Lambda}_{S(s, t)}\left(w_{t}^{s}\right) d s
$$

Since $w_{T}^{s}=w_{0}^{s}$ and $\sigma_{T}^{s}=D_{s \#} \sigma_{T}=D_{s \#} \sigma_{0}=\sigma_{0}^{s}$, we have $\bar{l}(T)=\bar{l}(0)$. This, together with Theorem 5.33 and the fact that $d \bar{\Lambda}=0$, yields

$$
\begin{aligned}
\int_{0}^{T} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t & =l(1)=l(r) . \text { But } \\
(5.50)|l(r)| & \leq \int_{0}^{T}\left|\bar{\Lambda}_{S(s, t)}\left(v_{t}^{r}\right)\right| d t \leq \int_{0}^{T}\left\|\bar{A}_{S(s, t)}\right\|_{S(s, t)} \mid v_{t}^{r} \|_{S(s, t)} d t \\
& \leq r\left\|\sigma^{\prime}\right\|_{\infty} \int_{0}^{T}\left\|\bar{A}_{S(s, t)}\right\|_{S(s, t)} d t,
\end{aligned}
$$

where we have used the last inequality in Equation 5.44. The first inequality in Equation 5.42 shows that, for r small enough, $\{S(s, t)\}_{t \in \times[0, T])}$ is contained in a small ball centered at δ_{0}. But Lemma 5.10 gives that $\mu \rightarrow\left\|\bar{A}_{\mu}\right\|_{\mu}$ is continuous at δ_{0}. Thus there exist constants c and r_{0} such that $\left\|\bar{A}_{S(s, t)}\right\|_{S(s, t)} \leq c$ for all $t \in[0, T]$ and all $r<r_{0}$. We can now exploit Equation 5.50 to obtain

$$
|l(1)|=\liminf _{r \rightarrow 0}|l(r)| \leq \liminf _{r \rightarrow 0} r T c| | \sigma^{\prime} \|_{\infty}=0 .
$$

QED.

Corollary 5.35. Let $\bar{\Lambda}$ be a regular pseudo 1 -form on \mathcal{M}. Let Λ denote the corresponding 1 -form on \mathcal{M}, defined by restriction. Assume $\bar{\Lambda}$ is closed, i.e. $d \bar{\Lambda}=0$. Then Λ is exact, i.e. there exists a differentiable function F on \mathcal{M} such that $d F=\Lambda$.

Proof: Fix $\mu \in \mathcal{M}$. Let σ be any curve in $A C_{2}(a, b ; \mathcal{M})$ such that $\sigma_{a}=\delta_{0}$ and $\sigma_{b}=\mu$. Assume that v is its velocity of minimal norm and that $\sup _{(a, b)}\left\|v_{t}\right\|_{\sigma_{t}}<\infty$. By Corollary 5.34, $\int_{\sigma} \bar{\Lambda}$ depends only on μ, i.e. it is independent of the path σ. Also, Remark 5.26 ensures that $\int_{\sigma} \bar{\Lambda}$ is independent of a, b. It is thus meaningful to define

$$
F(\mu):=\int_{\sigma} \bar{\Lambda} .
$$

We now want to show that F is differentiable. Fix $\mu, \nu \in \mathcal{M}$ and $\gamma \in \Gamma_{o}(\mu, \nu)$. Define $\sigma_{t}:=\left((1-t) \pi^{1}+t \pi^{2}\right)_{\#} \gamma$. Then $\sigma:[0,1] \rightarrow \mathcal{M}$ is a constant speed geodesic between μ and ν. Let v_{t} denote its velocity of minimal norm. Clearly,

$$
\begin{equation*}
F(\nu)-F(\mu)=\int_{0}^{1} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right) d t \tag{5.51}
\end{equation*}
$$

Let $\bar{\gamma}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ denote the barycentric projection of γ, cfr. [4] Definition 5.4.2. Set $v:=\bar{\gamma}-I d$. Then $\gamma_{t}:=\left(\pi^{1},(1-t) \pi^{1}+t \pi^{2}\right)_{\#} \gamma \in$
$\Gamma_{o}\left(\sigma_{0}, \sigma_{t}\right)$ and

$$
\begin{aligned}
& \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)-\bar{\Lambda}_{\sigma_{0}}(v) \\
& =\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{0}}(x), v_{t}(y)-v(x)\right\rangle+\left\langle B_{\sigma(0)}(x)(y-x), v_{t}(y)\right\rangle d \gamma_{t}(x, y) \\
& +\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}(y)-\bar{A}_{\sigma_{0}}(x)-B_{\sigma_{0}}(x)(y-x), v_{t}(y)\right\rangle d \gamma_{t}(x, y) .
\end{aligned}
$$

By Equation (5.8) and Hölder's inequality,

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{t}}(y)-\bar{A}_{\sigma_{0}}(x)-B_{\sigma_{0}}(x)(y-x), v_{t}(y)\right\rangle d \gamma_{t}(x, y)\right| \\
& \leq o\left(W_{2}\left(\sigma_{0}, \sigma_{t}\right)\right)\left\|v_{t}\right\|_{\sigma_{t}} .
\end{aligned}
$$

It is well known (cfr. [4] Lemma 7.2.1) that if $0<t \leq 1$ then there exists a unique optimal transport map T_{t}^{1} between σ_{t} and σ_{1}, i.e. $\Gamma_{o}\left(\sigma_{t}, \sigma_{1}\right)=\left\{\left(I d \times T_{t}^{1}\right)_{\#} \sigma_{t}\right\}$. One can check that $v_{t}(y)=\frac{T_{t}^{1}(y)-y}{1-t}$ and $\left\|v_{t}\right\|_{\sigma_{t}}=W_{2}\left(\sigma_{t}, \sigma_{1}\right) /(1-t)=W_{2}\left(\sigma_{0}, \sigma_{1}\right)$. Thus

$$
\begin{aligned}
& \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{0}}(x), v_{t}(y)-v(x)\right\rangle d \gamma_{t}(x, y) \\
& =\int\left\langle\bar{A}_{\sigma_{0}}(x), \frac{T_{t}^{1}(y)-y}{1-t}-(\bar{\gamma}(x)-x)\right\rangle d \gamma_{t}(x, y) \\
& =\int\left\langle\bar{A}_{\sigma_{0}}(x), \frac{z-((1-t) x+t z)}{1-t}-(z-x)\right\rangle d \gamma(x, z)=0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\sigma_{0}}(x)(y-x), v_{t}(y)\right\rangle d \gamma_{t}(x, y) \\
& =t \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle B_{\sigma_{0}}(x)(z-x), z-x\right\rangle d \gamma(x, y) \\
& =o\left(W_{2}\left(\sigma_{0}, \sigma_{1}\right)\right)=o\left(W_{2}(\mu, \nu)\right) .
\end{aligned}
$$

Combining these equations shows that

$$
\begin{equation*}
\bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)-\bar{\Lambda}_{\sigma_{0}}(v)=o\left(W_{2}(\mu, \nu)\right) . \tag{5.52}
\end{equation*}
$$

Notice that (5.52) is independent of t. Combining (5.51) and (5.52) we find

$$
\begin{aligned}
F(\nu) & =F(\mu)+\bar{\Lambda}_{\sigma_{0}}(v)+\int_{0}^{1} \bar{\Lambda}_{\sigma_{t}}\left(v_{t}\right)-\bar{\Lambda}_{\sigma_{0}}(v) d t \\
& =F(\mu)+\bar{\Lambda}_{\sigma_{0}}(v)+o\left(W_{2}(\mu, \nu)\right) \\
& =F(\mu)+\int_{\mathbb{R}^{D} \times \mathbb{R}^{D}}\left\langle\bar{A}_{\sigma_{0}}(x), y-x\right\rangle d \gamma(x, y)+o\left(W_{2}(\mu, \nu)\right) .
\end{aligned}
$$

As in Definition 4.11, this proves that F is differentiable and that $\nabla_{\mu} F=\pi_{\mu}\left(\bar{A}_{\mu}\right)$. Thus $d F=\Lambda$.

QED.

Remark 5.36. Recall from Section 3.2 that the tangent spaces of Section 2.3 should intuitively be thought of as tangent to the orbits $\mathcal{O}_{\mu} \simeq$ $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) / \operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$. In this sense Corollary 5.35 shows that the first de Rham cohomology group $H^{1}\left(\mathcal{O}_{\mu} ; \mathbb{R}\right)$ of each orbit vanishes. Notice that if μ is a Dirac measure then $\mathcal{O}_{\mu}=\mathbb{R}^{D}$, so this result makes sense. Now recall that, for a finite-dimensional manifold M, the first de Rham cohomology group is closely related to the topology of M, as follows: $H^{1}(M ; \mathbb{R})=\operatorname{Hom}\left(\pi_{1}(M), \mathbb{R}\right)$, where the latter denotes the space of group homomorphisms from the first fundamental group $\pi_{1}(M)$ to \mathbb{R}. For general μ, \mathcal{O}_{μ} is not a manifold so it is not a priori clear that there exists any relationship between our $H^{1}\left(\mathcal{O}_{\mu} ; \mathbb{R}\right)$ and $\pi_{1}\left(\mathcal{O}_{\mu}\right)$. However, we can informally prove the topological counterpart of Corollary 5.35 as follows.

Let G be a finite-dimensional Lie group and H be a closed subgroup. Recall that there exists a homotopy long exact sequence

$$
\cdots \rightarrow \pi_{1}(H) \rightarrow \pi_{1}(G) \rightarrow \pi_{1}(G / H) \rightarrow \pi_{0}(H) \rightarrow \pi_{0}(G) \ldots
$$

cfr. e.g. [10], VII.5. Now assume G is connected, i.e. $\pi_{0}(G)=1$. We can then dualize the final part of this sequence obtaining a new exact sequence

$$
\begin{equation*}
1 \rightarrow \operatorname{Hom}\left(\pi_{0}(H), \mathbb{R}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(G / H), \mathbb{R}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(G), \mathbb{R}\right) \tag{5.53}
\end{equation*}
$$

Now set $G:=\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ and $H:=\operatorname{Diff}_{c, \mu}\left(\mathbb{R}^{D}\right)$. In many cases it is known that $\pi_{1}(G)$ is finite: specifically, this is true at least for $D=$ $1,2,3$ and $D \geq 12$, cfr. [5] for related results. Let us assume that H has a finite number of components and that the homotopy long exact sequence is still valid in this infinite-dimensional setting. Sequence 5.53 then becomes

$$
1 \rightarrow 1 \rightarrow \operatorname{Hom}\left(\pi_{1}\left(\mathcal{O}_{\mu}\right), \mathbb{R}\right) \rightarrow 1
$$

so by exactness $\operatorname{Hom}\left(\pi_{1}\left(\mathcal{O}_{\mu}\right), \mathbb{R}\right)$ must also be trivial.
5.7. Example: 1-forms on the space of discrete measures. Fix an integer $n \geq 1$. Given $x_{1}, \cdots, x_{n} \in \mathbb{R}^{D}$, set $\mathbf{x}:=\left(x_{1}, \cdots, x_{n}\right)$ and $\mu_{\mathrm{x}}:=1 / n \sum_{i=1}^{n} \delta_{x_{i}}$. Let M denote the set of such measures and $T M$ denote its tangent bundle, cfr. Examples 2.2 and 2.8. Choose a regular pseudo 1 -form $\bar{\Lambda}$ on \mathcal{M}. By restriction we obtain a 1 -form α on M, defined by $\alpha_{\mathbf{x}}:=\bar{\Lambda}_{\mu_{\mathrm{x}}}$. Let $A: \mathbb{R}^{n D} \rightarrow \mathbb{R}^{n D}$ be defined by

$$
A(\mathbf{x})=\left(A_{1}(\mathbf{x}), \cdots, A_{n}(\mathbf{x})\right):=\left(\bar{A}_{\mu_{\mathrm{x}}}\left(x_{1}\right), \cdots, \bar{A}_{\mu_{\mathrm{x}}}\left(x_{n}\right)\right)
$$

Notice that if $X=\left(X_{1}, \cdots, X_{n}\right) \in \mathbb{R}^{n D}$ satisfies $X_{i}=X_{j}$ whenever $x_{i}=x_{j}$ then $\alpha_{\mathbf{x}}(X)=\frac{1}{n}\langle A(\mathbf{x}), X\rangle$. Now define a $n D \times n D$ matrix $B(\mathbf{x})$ by setting
$B_{k+i, k+j}:=\left(B_{\mu_{\mathbf{x}}}\left(x_{k+1}\right)\right)_{i j}, \quad$ for $k=0, \cdots n-1, \quad i, j=1, \cdots, D$,
$B_{l, m}:=0 \quad$ if $\quad(l, m) \notin\{(k+i, k+j): k=0, \cdots n-1, \quad i, j=1, \cdots, D\}$.
Proposition 5.37. The map $A: \mathbb{R}^{n D} \rightarrow \mathbb{R}^{n D}$ is differentiable and $\nabla A(\mathbf{x})=B(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^{n D}$.
Proof: Let $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n D}$. Set $r:=\min _{x_{i} \neq x_{j}}\left|x_{i}-x_{j}\right|$. If $\mathbf{y}=\left(y_{1}, \cdots, y_{n}\right) \in \mathbb{R}^{n D}$ and $|\mathbf{y}-\mathbf{x}|<r / 2$ then $\Gamma_{o}\left(\mu_{\mathbf{x}}, \mu_{\mathbf{y}}\right)$ has a single element $\gamma_{\mathbf{y}}=1 / n \sum_{i=1}^{n} \delta_{\left(x_{i}, y_{i}\right)}$ and $n W_{2}^{2}\left(\mu_{\mathbf{x}}, \mu_{\mathbf{y}}\right)=|\mathbf{y}-\mathbf{x}|^{2}$. By Equation 5.8,

$$
\begin{equation*}
|A(\mathbf{y})-A(\mathbf{x})-B(\mathbf{x})(\mathbf{y}-\mathbf{x})|^{2}=n o\left(\frac{|\mathbf{y}-\mathbf{x}|^{2}}{n}\right) \tag{5.56}
\end{equation*}
$$

This concludes the proof.
QED.

Lemma 5.38. Suppose $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n D}$ and $X=\left(X_{1}, \cdots, X_{n}\right)$, $Y=\left(Y_{1}, \cdots, Y_{n}\right) \in \mathbb{R}^{n D}$ are such that $X_{i}=X_{j}, Y_{i}=Y_{j}$ whenever $x_{i}=x_{j}$. Then

$$
d \bar{\Lambda}_{\mu_{\mathbf{x}}}(X, Y)=d \alpha_{\mathbf{x}}(X, Y)
$$

Proof: We use Lemma 5.16 and Equations 5.54-5.55 to obtain

$$
d \bar{\Lambda}_{\mu_{\mathbf{x}}}(X, Y)=\sum_{k=1}^{n}\left\langle\left(B_{\mu_{\mathbf{x}}}\left(x_{k}\right)-B_{\mu_{\mathbf{x}}}\left(x_{k}\right)^{T}\right) X_{k}, Y_{k}\right\rangle=d \alpha_{\mathbf{x}}(X, Y)
$$

QED.
Corollary 5.39. Suppose that $\mathbf{r}=\left(r_{1}, \cdots, r_{n}\right) \in C^{2}\left([0, T], \mathbb{R}^{n D}\right)$ and set $\sigma_{t}:=1 / n \sum_{i=1}^{n} \delta_{r_{i}(t)}$. If $\bar{\Lambda}$ is closed and $\sigma_{0}=\sigma_{T}$ then $\int_{\sigma} \alpha=0$.
Proof: This is a direct consequence of Corollary 5.34.
QED.

Remark 5.40. One can check by direct computation that the familiar identity $\partial_{t}\left(\alpha_{\mathbf{x}}\left(\partial_{s} \mathbf{x}\right)\right)-\partial_{s}\left(\alpha_{\mathbf{x}}\left(\partial_{t} \mathbf{x}\right)\right)=d \alpha_{\mathbf{x}}\left(\partial_{t} \mathbf{x}, \partial_{s} \mathbf{x}\right)$ holds. Together with Lemma 5.38 this shows that

$$
\partial_{t}\left(\bar{\Lambda}_{\sigma_{t}^{s}}\left(w_{t}^{s}\right)\right)-\partial_{s}\left(\bar{\Lambda}_{\sigma_{t}^{s}}\left(v_{t}^{s}\right)\right)=d \bar{\Lambda}_{\sigma_{t}^{s}}\left(v_{t}^{s}, w_{t}^{s}\right),
$$

which we used to prove Theorem 5.34.

Remark 5.41. Notice that the assumption $\sigma_{0}=\sigma_{T}$ is weaker than $\mathbf{r}(0)=\mathbf{r}(T)$.

6. A symplectic foliation of \mathcal{M} via Hamiltonian DIFFEOMORPHISMS

In Section 3.2 we used the action of the group of diffeomorphisms $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ to build a foliation of \mathcal{M} : this allowed us to formally reconstruct the differential calculus on \mathcal{M}. We now specialize to the case $D=2 d$. In this case the underlying manifold $\mathbb{R}^{2 d}$ has a natural extra structure, the symplectic structure ω. The goal of this section is to use this extra data to build a second, finer, foliation of \mathcal{M}; we then prove that each leaf of this foliation admits a symplectic structure Ω. The foliation is obtained via a smaller group of diffeomorphisms defined by ω, the Hamiltonian diffeomorphisms. Section 6.1 provides an introduction to this group, cfr. [34] or [30] for details.
6.1. The group of Hamiltonian diffeomorphisms. Recall that a symplectic structure on a finite-dimensional vector space V is a 2 -form $\omega: V \times V \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\omega^{b}: V \rightarrow V^{*}, \quad v \mapsto i_{v} \omega \tag{6.1}
\end{equation*}
$$

is injective. Then ω^{b} is an isomorphism; we will denote its inverse by ω^{\sharp}.

Let M be a smooth manifold of dimension $D:=2 d$. A symplectic structure on M is a smooth closed 2-form ω satisfying Equation 6.1 at each tangent space $V=T_{x} M$; equivalently, such that ω^{d} is a volume form on M. Notice that, since $d \omega=0$, Cartan's formula A. 13 shows that $\mathcal{L}_{X} \omega=d i_{X} \omega$. Throughout this section, to simplify notation, we will drop the difference between compact and noncompact manifolds but the reader should keep in mind that in the latter case we always silently restrict our attention to maps and vector fields with compact support.

Consider the set of symplectomorphisms of M, i.e.

$$
\operatorname{Symp}(M):=\left\{\phi \in \operatorname{Diff}(M): \phi^{*} \omega=\omega\right\} .
$$

This is clearly a subgroup of $\operatorname{Diff}(M)$. Using the methods of Section A. 3 (see in particular Remark A.21) one can show that it has a Lie group structure. Its tangent space at $I d$, thus its Lie algebra, is by definition isomorphic to the space of closed 1-forms on M. Via ω^{\sharp} and Formula A. 13 this space is isomorphic to the space of symplectic or locally Hamiltonian vector fields, i.e.

$$
\text { Symp } \mathcal{X}:=\left\{X \in \mathcal{X}(M): \mathcal{L}_{X} \omega=0\right\} .
$$

Remark 6.1. Equation A. 9 confirms that $\operatorname{Symp} \mathcal{X}$ is closed under the bracket operation, i.e. that it is a Lie subalgebra of $\mathcal{X}(M)$. Equation A. 10 confirms that $\operatorname{Symp} \mathcal{X}$ is closed under the push-forward operation, i.e. under the adjoint representation of $\operatorname{Symp}(M)$ on $\operatorname{Symp} \mathcal{X}$, cfr. Lemma A. 20 .

We say that a vector field X on M is Hamiltonian if the corresponding 1-form $\xi:=\omega(X, \cdot)$ is exact: $\xi=d f$. We then write $X=X_{f}$. This defines the space of Hamiltonian vector fields $\operatorname{Ham} \mathcal{X}$. It is useful to rephrase this definition as follows. Consider the map

$$
\begin{equation*}
C^{\infty}(M) \rightarrow \mathcal{X}(M), \quad f \mapsto d f \simeq X_{f}:=\omega^{\sharp}(d f) . \tag{6.2}
\end{equation*}
$$

The Hamiltonian vector fields are the image of this map. This map is linear. It is not injective: its kernel is the space of functions constant on M. In Section 7.1 we will start referring to these functions as the Casimir functions for the map of Equation 6.2.

Remark 6.2. We can rephrase the properties of the map of Equation 6.2 by saying that there exists a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \rightarrow C^{\infty}(M) \rightarrow \operatorname{Ham} \mathcal{X} \rightarrow 0 \tag{6.3}
\end{equation*}
$$

As already mentioned, the function corresponding to a given Hamiltonian vector field is well-defined only up to a constant. In some cases we can fix this constant via a normalization, i.e. we can build an inverse map $\operatorname{Ham} \mathcal{X} \rightarrow C^{\infty}(M)$. We then obtain an isomorphism between $\operatorname{Ham} \mathcal{X}$ and the space of normalized functions. For example, if M is compact we can fix this constant by requiring that f have integral zero, $\int_{M} f \omega^{d}=0$. If instead $M=\mathbb{R}^{2 d}$ and we restrict our attention as usual to Hamiltonian diffeomorphisms with compact support, we should restrict Equation 6.2 to the space $\mathbb{R} \oplus C_{c}^{\infty}\left(\mathbb{R}^{2 d}\right)$ of functions which are constant outside of a compact set; by restriction we then get an isomorphism $C_{c}^{\infty}\left(\mathbb{R}^{2 d}\right) \simeq \operatorname{Ham} \mathcal{X}$.

More generally, a time-dependent vector field X_{t} is Hamiltonian if $\omega\left(X_{t}, \cdot\right)=d f_{t}$ for some curve of smooth functions f_{t}. We say that the diffeomorphism $\phi \in \operatorname{Diff}(M)$ is Hamiltonian if it can be obtained as the time $t=1$ flow of a time-dependent Hamiltonian vector field $X_{f_{t}}$, i.e. if $\phi=\phi_{1}$ and ϕ_{t} solves Equation A.8.

Let $\operatorname{Ham}(M)$ denote the set of Hamiltonian diffeomorphisms. It follows from Lemma A. 3 that all such maps are symplectomorphisms. It is not immediately obvious that $\operatorname{Ham}(M)$ is closed under composition but it is not hard to prove that this is indeed true, cfr. [34] Proposition 10.2 and Exercise 10.3. Once again, the methods of Section A. 3 and

Remark A. 21 show that $\operatorname{Ham}(M)$ has a Lie group structure. Its tangent space at $I d$, thus its Lie algebra, is isomorphic to the space of exact 1 -forms, which via ω^{\sharp} corresponds to the space of Hamiltonian vector fields.

It is a fundamental fact of Symplectic Geometry that ω defines a Lie bracket on $C^{\infty}(M)$ as follows:

$$
\{f, g\}:=\omega\left(X_{f}, X_{g}\right)=d f\left(X_{g}\right)=\mathcal{L}_{X_{g}} f
$$

This operation is clearly bilinear and antisymmetric. The fact that it satisfies the Jacobi identity, cfr. Definition A.2, follows from the following standard result.

Lemma 6.3. Let $\phi \in \operatorname{Symp}(M)$. Then $\phi^{*} X_{f}=X_{\phi^{*} f}$ and $\phi^{*}\{f, g\}=$ $\left\{\phi^{*} f, \phi^{*} g\right\}$. Applying this to $\phi_{t} \in \operatorname{Symp}(M)$ and differentiating, it implies:

$$
\begin{equation*}
\mathcal{L}_{X_{h}}\{f, g\}=\left\{\mathcal{L}_{X_{h}} f, g\right\}+\left\{f, \mathcal{L}_{X_{h}} g\right\} . \tag{6.4}
\end{equation*}
$$

Lemma 6.4. The map $f \mapsto X_{f}$ has the following property:

$$
X_{\{f, g\}}=-\left[X_{f}, X_{g}\right] .
$$

Proof: It is enough to check that $d h\left(X_{\{f, g\}}\right)=-d h\left(\left[X_{f}, X_{g}\right]\right)$, for all $h \in C^{\infty}(M)$. As usual, it will simplify the notation to set $X(f):=$ $d f(X)$. In particular $X_{f}(h)=\{h, f\}$ and $d h([X, Y])=X(Y(h))-$ $Y(X(h))$. Then:

$$
\begin{aligned}
X_{\{f, g\}}(h) & =\{h,\{f, g\}\}=-\{f,\{g, h\}\}-\{g,\{h, f\}\} \\
& =-\{\{h, g\}, f\}+\{\{h, f\}, g\} \\
& =-X_{f}\left(X_{g}(h)\right)+X_{g}\left(X_{f}(h)\right)=-\left[X_{f}, X_{g}\right](h) .
\end{aligned}
$$

QED.
Recall from Section A. 3 the negative sign appearing in the Lie bracket $[\cdot, \cdot]_{\mathfrak{g}}$ on vector fields. It follows from Lemma 6.4 that the map of Equation 6.2 is a Lie algebra homomorphism between $C^{\infty}(M)$ and the space of Hamiltonian vector fields, endowed with that Lie bracket.

Remark 6.5. Lemma 6.4 confirms that $\operatorname{Ham} \mathcal{X}$ is a Lie subalgebra of $\mathcal{X}(M)$. Lemma 6.3 confirms that it is closed under symplectic pushforward, so in particular it is closed under the adjoint representation of $\operatorname{Ham}(M)$.

Remark 6.6. Notice that $\operatorname{Ham}(M)$ is connected by definition. If M satisfies $H^{1}(M, \mathbb{R})=0$, i.e. every closed 1-form is exact, then every symplectic vector field is Hamiltonian. Now assume that $\phi \in \operatorname{Symp}(M)$ is such that there exists $\phi_{t} \in \operatorname{Symp}(M)$ with $\phi_{0}=I d$ and $\phi_{1}=\phi$. It then follows from Lemma A. 3 that ϕ is Hamiltonian, i.e. that the connected component of $\operatorname{Symp}(M)$ containing the identity coincides with $\operatorname{Ham}(M)$. In particular this applies to $M=\mathbb{R}^{2 d}$, so in later sections we could just as well choose to work with (the connected component containing $I d$ of) $\operatorname{Symp}_{c}\left(\mathbb{R}^{2 d}\right)$ rather than with $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$. We choose however not to do this, so as to emphasize the fact that for general M the two groups are indeed different and that generalizing our constructions would require working with $\operatorname{Ham}(M)$ rather than with $\operatorname{Symp}(M)$.
Remark 6.7. In many cases it is known that $\operatorname{Symp}(M)$ is closed in $\operatorname{Diff}(M)$ and that $\operatorname{Ham}(M)$ is closed in $\operatorname{Symp}(M)$, see [34] and [36] for details.
6.2. A symplectic foliation of \mathcal{M}. The manifold $\mathbb{R}^{2 d}$ has a natural symplectic structure defined by $\omega:=d x^{i} \wedge d y^{i}$. Let J denote the natural complex structure on $\mathbb{R}^{2 d}$, defined with respect to the basis $\partial x^{1}, \ldots, \partial x^{d}, \partial y^{1}, \ldots, \partial y^{d}$ by the matrix

$$
J=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right)
$$

Notice that $\omega(\cdot, \cdot)=g(J \cdot, \cdot)$. It follows from this that Hamiltonian vector fields on $\mathbb{R}^{2 d}$ satisfy the identity

$$
\begin{equation*}
X_{f}=-J \nabla f \tag{6.5}
\end{equation*}
$$

Set $\mathcal{G}:=\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$, the group of compactly-supported Hamiltonian diffeomorphisms on $\mathbb{R}^{2 d}$. Let Ham \mathcal{X}_{c} denote the corresponding Lie algebra, i.e. the space of compactly supported Hamiltonian vector fields on $\mathbb{R}^{2 d}$. The push-forward action of $\operatorname{Diff}_{c}\left(\mathbb{R}^{2 d}\right)$ on \mathcal{M} restricts to an action of \mathcal{G}. The corresponding orbits and stabilizers are
$\mathcal{O}_{\mu}:=\left\{\nu \in \mathcal{M}: \nu=\phi_{\#} \mu\right.$, for some $\left.\phi \in \mathcal{G}\right\}, \mathcal{G}_{\mu}:=\left\{\phi \in \mathcal{G}: \phi_{\#} \mu=\mu\right\}$.
Notice that this action provides a second foliation of \mathcal{M}, finer than the one of Section 3.2.
Example 6.8. As in Example 2.2, let $a_{i}(i=1, \ldots, n)$ be a fixed collection of positive numbers such that $\sum a_{i}=1$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2 d}$ be n distinct points. Set $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \in \mathcal{M}$ and

$$
\mathcal{O}=\left\{\sum_{i=1}^{n} a_{i} \delta_{\bar{x}_{i}}: \bar{x}_{1}, \ldots, \bar{x}_{n} \in \mathbb{R}^{2 d} \quad \text { are distinct }\right\}
$$

Since smooth Hamiltonian diffeomeorphisms are one-to-one maps of $\mathbb{R}^{2 d}$ it is clear that $\mathcal{O}_{\mu} \subseteq \mathcal{O}$. Given any $\bar{x}_{1} \in \mathbb{R}^{2 d} \backslash\left\{x_{2}, \ldots, x_{n}\right\}$ one can show that there exists a Hamiltonian diffeomorphism ϕ with compact support such that $\phi\left(x_{1}\right)=\bar{x}_{1}$ and $\phi\left(x_{i}\right)=x_{i}$ for $i \neq 1$. Thus, setting $\bar{\mu}:=a_{1} \delta_{\bar{x}_{1}}+\sum_{i=2}^{n} a_{i} \delta_{x_{i}}$, we see that $\bar{\mu} \in \mathcal{O}_{\mu}$. Repeating the argument $n-1$ times we conclude that $\mathcal{O} \subseteq \mathcal{O}_{\mu}$, so $\mathcal{O}=\mathcal{O}_{\mu}$.
Definition 6.9. Let $\mu \in \mathcal{M}$. Consider the $L^{2}(\mu)$-closure ${\overline{\operatorname{Ham} \mathcal{X}_{c}}}^{\mu}$ of Ham \mathcal{X}_{c}. We can restrict the operator div_{μ} to this space; we will continue to denote its kernel $\operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$. We define the symplectic tangent subspace at μ to be the Hilbert space

$$
T_{\mu} \mathcal{O}:=\overline{\operatorname{Ham}_{c}}{ }^{\mu} / \operatorname{Ker}\left(d i v_{\mu}\right) \leq L^{2}(\mu) / \operatorname{Ker}\left(d i v_{\mu}\right) .
$$

Recall from Remark 2.7 the identification $\pi_{\mu}: L^{2}(\mu) / \operatorname{Ker}\left(\operatorname{div}_{\mu}\right) \rightarrow$ $T_{\mu} \mathcal{M}$. By restriction this allows us to identify $T_{\mu} \mathcal{O}$ with the subspace $\pi_{\mu}\left(\overline{\operatorname{Ham}}_{c}{ }^{\mu}\right) \leq T_{\mu} \mathcal{M}$. We define the pseudo symplectic distribution on \mathcal{M} to be the union of all spaces $\overline{\operatorname{Ham} \mathcal{X}_{c}}$, for $\mu \in \mathcal{M}$. It is a subbundle of $\mathcal{T} \mathcal{M}$. We define the the symplectic distribution on \mathcal{M} to be the union of all spaces $T_{\mu} \mathcal{O}$, for $\mu \in \mathcal{M}$. Up to the above identification, it is a subbundle of $T \mathcal{M}$.

Remark 6.10. Recall that in general a Hilbert space projection will not necessarily map closed subspaces to closed subspaces. Thus it is not clear that $\pi_{\mu}\left({\overline{\operatorname{Ham} \mathcal{X}_{c}}}^{\mu}\right)$ is closed in $T_{\mu} \mathcal{M}$. In other words, from the Hilbert space point of view the two notions of $T_{\mu} \mathcal{O}$ introduced in Definition 6.9 are not necessarily equivalent. This is in contrast with the two notions of $T_{\mu} \mathcal{M}$, cfr. Definition 2.5 and Remark 2.7.
Remark 6.11. Formally speaking the symplectic distribution is integrable because it is the set of tangent spaces of the smooth foliation defined by the action of \mathcal{G}.
Example 6.12. It is interesting to compare the space ${\overline{\operatorname{Ham}}{ }_{c}}^{\mu}$ to the subspaces defined by Decomposition 2.5. For example, let $\mu=\delta_{x}$. Recall from Example 2.8 that for any $\xi \in L^{2}(\mu)$ there exists $\bar{\varphi} \in C_{c}^{\infty}$ such that $\xi(x)=\nabla \bar{\varphi}(x)$. Thus $\overline{\nabla C_{c}^{\infty}}{ }^{\mu}=L^{2}(\mu)$. Now choose any $X \in L^{2}(\mu)$ and apply this construction to $\xi:=J X$. Then $X(x)=$ $-J \nabla \bar{\varphi}(x)$, so $\overline{\operatorname{Ham}_{c}}{ }^{\mu}=L^{2}(\mu)$. This is the infinitesimal version of Example 6.8. In particular, $\overline{\operatorname{HamX}}{ }_{c}^{\mu}=\overline{\nabla C_{c}^{\infty}}{ }^{\mu}$.

The "opposite extreme" is represented by the absolutely continuous case $\mu=\rho \mathcal{L}$, for some $\rho>0$. In this case if a Hamiltonian vector field is a gradient vector field, e.g. $-J \nabla v=\nabla u$, then the function $u+i v$ is holomorphic on \mathbb{C}^{d}, so u and v are pluriharmonic functions on $\mathbb{R}^{2 d}$ in the sense of the theory of several complex variables. This is a very
strong condition: in particular, it implies that u and v are harmonic. Thus $\operatorname{Ham} \mathcal{X}_{c} \cap \nabla C_{c}^{\infty}=\{0\}$.

We can also compare $\overline{\operatorname{Ham} \mathcal{X}_{c}}{ }^{\mu}$ with $\operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$. When $\mu=\delta_{x}$ we saw in Example 2.8 that $\operatorname{Ker}\left(d i v_{\mu}\right)=\{0\}$, so $\overline{\operatorname{Ham} \mathcal{X}_{c}}{ }^{\mu} \cap \operatorname{Ker}\left(d i v_{\mu}\right)=$ $\{0\}$. On the other hand, assume $\mu=\rho \mathcal{L}$ for some $\rho>0$. Then $\operatorname{div}_{\mu}(X)=\rho \operatorname{div}(X)+\langle\nabla \rho, X\rangle$. Choose $X=-J \nabla f$. Then $\operatorname{div}(X)=0$ so $\operatorname{div}_{\mu}(X)=0$ iff $\langle\nabla \rho,-J \nabla f\rangle=0$. Choosing in particular $f=\rho$ shows that $\operatorname{Ham} \mathcal{X}_{c} \cap \operatorname{Ker}\left(\operatorname{div}_{\mu}\right) \neq\{0\}$.

We now want to show that each $T_{\mu} \mathcal{O}$ has a natural symplectic structure; this will justify the terminology of Definition 6.9. We rely on the following general construction.

Definition 6.13. Let (V, ω) be a symplectic vector space. Let W be a subspace of V. In general the restriction of ω to W will not be nondegenerate. Set $Z:=\left\{w \in W: \omega(w, \cdot)_{\mid W} \equiv 0\right\}$. Then ω reduces to a symplectic structure on the quotient space W / Z, defined by

$$
\omega\left([w],\left[w^{\prime}\right]\right):=\omega\left(w, w^{\prime}\right)
$$

In our case we can set $V:=L^{2}(\mu)$ and $W:=\overline{\overline{\operatorname{Ham} \mathcal{X}_{c}}}{ }^{\mu}$. The 2-form

$$
\begin{equation*}
\hat{\Omega}_{\mu}(X, Y):=\int_{\mathbb{R}^{2 d}} \omega(X, Y) d \mu \tag{6.6}
\end{equation*}
$$

defines a symplectic structure on $L^{2}(\mu)$. The restriction of $\hat{\Omega}_{\mu}$ defines a 2 -form

$$
\bar{\Omega}_{\mu}: \overline{\operatorname{HamX}}_{c}{ }^{\prime} \times \overline{\operatorname{Ham\mathcal {X}}}_{c}{ }^{\mu} \rightarrow \mathbb{R} .
$$

Notice that $\hat{\Omega}_{\mu}$ is continuous in the sense of Definition 4.6 , so $\bar{\Omega}_{\mu}$ can also be defined as the unique continuous extension of the 2 -form

$$
\begin{equation*}
\bar{\Omega}_{\mu}: \operatorname{Ham} \mathcal{X}_{c} \times \operatorname{Ham} \mathcal{X}_{c} \rightarrow \mathbb{R}, \quad \bar{\Omega}_{\mu}\left(X_{f}, X_{g}\right):=\int \omega\left(X_{f}, X_{g}\right) d \mu \tag{6.7}
\end{equation*}
$$

Notice also that, for any $X \in L^{2}(\mu)$,

$$
\begin{equation*}
\int \omega\left(X, X_{f}\right) d \mu=-\int d f(X) d \mu=\left\langle\operatorname{div}_{\mu}(X), f\right\rangle \tag{6.8}
\end{equation*}
$$

so $\int \omega(X, \cdot) d \mu \equiv 0$ on $\overline{\operatorname{HamX}}_{c}{ }^{\mu}$ iff $X \in \operatorname{Ker}\left(\operatorname{div}_{\mu}\right)$. This calculation shows that the space Z of Definition 6.13 coincides with the space $\operatorname{Ker}\left(\operatorname{div}_{\mu}\right) \cap \overline{\operatorname{Ham~}_{c}}{ }^{\mu}$. We can now define Ω_{μ} to be the reduced symplectic structure on the space $T_{\mu} \mathcal{O}=W / Z$. In terms of the identification π_{μ}, this yields

$$
\begin{equation*}
\Omega_{\mu}: T_{\mu} \mathcal{O} \times T_{\mu} \mathcal{O} \rightarrow \mathbb{R}, \quad \Omega_{\mu}\left(\pi_{\mu}\left(X_{f}\right), \pi_{\mu}\left(X_{g}\right)\right):=\int \omega\left(X_{f}, X_{g}\right) d \mu \tag{6.9}
\end{equation*}
$$

Using Equation 6.5 we can also write this as

$$
\Omega_{\mu}\left(\pi_{\mu}\left(X_{f}\right), \pi_{\mu}\left(X_{g}\right)\right)=\int \omega(J \nabla f, J \nabla g) d \mu=\int g(J \nabla f, \nabla g) d \mu .
$$

We now want to understand the geometric and differential properties of $\bar{\Omega}$. It is simple to check that $\bar{\Omega}$ is \mathcal{G}-invariant, in the sense that $\phi^{*} \bar{\Omega}=\bar{\Omega}$, for all $\phi \in \mathcal{G}$. Indeed, using Definition 4.10 and Lemma 6.3,

$$
\begin{aligned}
\left(\phi^{*} \bar{\Omega}\right)_{\mu}\left(X_{f}, X_{g}\right) & =\bar{\Omega}_{\phi_{\#} \mu}\left(\phi_{*}\left(X_{f}\right), \phi_{*}\left(X_{g}\right)\right) \\
& =\int_{\mathbb{R}^{2 d}} \omega\left(X_{f \circ \phi^{-1}}, X_{g \circ \phi^{-1}}\right) d \phi_{\#} \mu \\
& =\int_{\mathbb{R}^{2 d}}\left\{f \circ \phi^{-1}, g \circ \phi^{-1}\right\} d \phi_{\#} \mu \\
& =\int_{\mathbb{R}^{2 d}}\{f, g\} \circ \phi^{-1} d \phi_{\#} \mu=\bar{\Omega}_{\mu}\left(X_{f}, X_{g}\right) .
\end{aligned}
$$

It then follows that Ω is also \mathcal{G}-invariant.
Lemma 6.14. Given any $X, Y, Z \in \operatorname{Ham} \mathcal{X}_{c}$,

$$
\begin{align*}
& X \bar{\Omega}(Y, Z)-Y \bar{\Omega}(X, Z)+Z \bar{\Omega}(X, Y) \tag{6.10}\\
& -\bar{\Omega}([X, Y], Z)+\bar{\Omega}([X, Z], Y)-\bar{\Omega}([Y, Z], X)=0 .
\end{align*}
$$

Proof: Notice that $\bar{\Omega}(Y, Z)$ is a linear function on \mathcal{M} in the sense of Example 4.9. It is thus differentiable, cfr. Example 4.13, and $X \bar{\Omega}(Y, Z)=\int X \omega(Y, Z) d \mu$. It follows that the left hand side of Equation 6.10 reduces to $\int d \omega(X, Y, Z) d \mu$, which vanishes because ω is closed.

QED.
This shows that $\bar{\Omega}$ is differentiable and closed in the sense analogous to Definition 4.14, i.e. using Equation A. 11 with $k=2$ instead of $k=1$. Using the terminology of Section 4.2 we can say that $\bar{\Omega}$ is a closed pseudo linear 2-form defined on the pseudo distribution $\mu \rightarrow \overline{\operatorname{Ham} \mathcal{X}_{c}}{ }^{\mu}$ of Definition 6.9.

Remark 6.15. As in Remark 6.10, it may again be useful to emphasize a possible misconception related to the identification

$$
\pi_{\mu}: \overline{\operatorname{Ham}}_{c}{ }^{\mu} / \operatorname{Ker}\left(d i v_{\mu}\right) \simeq \pi_{\mu}\left({\overline{\operatorname{Ham} \mathcal{X}_{c}}}^{\mu}\right)
$$

One could also restrict $\hat{\Omega}_{\mu}$ to the subspace $W^{\prime}:=\pi_{\mu}\left(\overline{\operatorname{Ham}}_{c}{ }^{\mu}\right)$, obtaining a 2 -form

$$
\Omega_{\mu}^{\prime}\left(\pi_{\mu}\left(X_{f}\right), \pi_{\mu}\left(X_{g}\right)\right)=\int \omega\left(\pi_{\mu}(J \nabla f), \pi_{\mu}(J \nabla g)\right) d \mu
$$

It is important to realize that Ω_{μ}^{\prime} does not coincide, under π_{μ}, with Ω_{μ}. Specifically, Ω_{μ}^{\prime} differs from Ω_{μ} in that it does not take into account the divergence components of X_{f}, X_{g}.

In the framework of [4] it is more natural to work in terms of the subspace $\pi_{\mu}\left(\overline{\operatorname{HamX}}^{\mu}\right) \subseteq T_{\mu} \mathcal{M}$ than in terms of the quotient space $\overline{\operatorname{HamX}}_{c}{ }^{\mu} / \operatorname{Ker}\left(d i v_{\mu}\right)$. From this point of view, the choice of Ω_{μ} as a symplectic structure on $T_{\mu} \mathcal{O}$ may seem less natural than the choice of Ω_{μ}^{\prime}. The fact that Ω_{μ} is even well-defined on $T_{\mu} \mathcal{O}$ follows only from Equation 6.8. Our reasons for preferring Ω_{μ} are based on its geometric and differential properties seen above. Together with Remark 6.10, this shows that from a symplectic viewpoint the identification π_{μ} is not natural.

We can now define the concept of a Hamiltonian flow on \mathcal{M} as follows.

Definition 6.16. Let $F: \mathcal{M} \rightarrow \mathbb{R}$ be a differentiable function on \mathcal{M} with gradient ∇F. We define the Hamiltonian vector field associated to F to be $X_{F}(\mu):=\pi_{\mu}(-J \nabla F)$. A Hamiltonian flow on M is a solution to the equation

$$
\frac{\partial \mu_{t}}{\partial t}=-d i v_{\mu_{t}}\left(X_{F}\right)
$$

We refer to [3] and to [24] for specific results concerning Hamiltonian flows on \mathcal{M}.
6.3. Algebraic properties of the symplectic distribution. Regardless of Remarks 6.10 and 6.15, from the point of view of [4] it is interesting to understand the linear-algebraic properties of the symplectic spaces $\left(T_{\mu} \mathcal{O}, \Omega_{\mu}\right)$, viewed as subspaces $\pi_{\mu}\left(\overline{\operatorname{HamX}_{c}}{ }^{\mu}\right) \leq T_{\mu} \mathcal{M}$. Throughout this section we will use this identification. We will mainly work in terms of the complex structure J on $\mathbb{R}^{2 d}$ and of certain related maps. This will also serve to emphasize the role played by J within this theory. The key to this construction is of course the peculiar compatibility between the standard structures $g:=\langle\cdot, \cdot\rangle, \omega$ and J on $\mathbb{R}^{2 d}$, which we emphasize as follows.

Definition 6.17. Let V be a vector space endowed with both a metric g and a symplectic structure ω. Recall that there exists a unique $A \in$ $\operatorname{Aut}(V)$ such that $\omega(\cdot, \cdot)=g(A \cdot, \cdot)$. Notice that under the isomorphism $V \simeq V^{*}$ induced by g, A coincides with the map ω^{b} of Equation 6.1.

The fact that ω is anti-symmetric implies that A is anti-selfadjoint, i.e. $A^{*}=-A$. We say that (ω, g) are compatible if A is an isometry, i.e. $A^{*}=A^{-1}$. In this case $A^{2}=-I d$, i.e. A is a complex structure
on V. A subspace $W \leq V$ is symplectic if the restriction of ω to W is non-degenerate. In particular, if g and ω are compatible than any complex subspace of V is symplectic.

The analogous definitions hold for a smooth manifold M endowed with a Riemannian metric g and a symplectic structure ω. In general, given any function f on M, the Hamiltonian vector field X_{f} is related to the gradient field ∇f as follows: $X_{f}=A^{-1} \nabla f$. If g and ω are compatible then $X_{f}=-A \nabla f$.

The standard structures g and ω on $\mathbb{R}^{2 d}$ are of course the primary example of compatible structures. Given any $\mu \in \mathcal{M}, \hat{G}_{\mu}$ and $\hat{\Omega}_{\mu}$ (defined in Equations 2.4 and 6.6) are compatible structures on $L^{2}(\mu)$. In this case the corresponding automorphism is the isometry

$$
J: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad(J X)(x):=J(X(x))
$$

Remark 6.18. Notice that $\overline{\operatorname{HamX}_{c}}{ }^{\mu}=-J\left(T_{\mu} \mathcal{M}\right)$. Thus $\overline{\operatorname{HamX}}_{c}{ }^{\mu}$ is J-invariant iff $T_{\mu} \mathcal{M}$ is J-invariant iff $T_{\mu} \mathcal{O}=T_{\mu} \mathcal{M}$. In this case, $\bar{\Omega}_{\mu}=$ $\Omega_{\mu}=\Omega_{\mu}^{\prime}$. Example 6.12 shows that this is the case if μ is a Dirac measure. Example 6.12 also shows that if $\mu=\rho \mathcal{L}$ for some $\rho>0$ then the space ∇C_{c}^{∞} is totally real, i.e. $J\left(\nabla C_{c}^{\infty}\right) \cap \nabla C_{c}^{\infty}=\operatorname{Ham} \mathcal{X}_{c} \cap$ $\nabla C_{c}^{\infty}=\{0\}$.

Our first goal is to characterize the orthogonal complement of the closure of $T_{\mu} \mathcal{O}$ in $T_{\mu} \mathcal{M}$. Recall that any continuous map $P: H \rightarrow H$ on a Hilbert space H satisfies Image $(P)^{\perp}=\operatorname{Ker}\left(P^{*}\right)$, where $P^{*}: H \rightarrow H$ is the adjoint map. This yields an orthogonal decomposition $H=$ $\overline{\text { Image }(P)} \oplus \operatorname{Ker}\left(P^{*}\right)$.

Our first example of this is Decomposition 2.5, corresponding to the map $P:=\pi_{\mu}$ defined on $H:=L^{2}(\mu)$: in this case Image (P) is closed and π_{μ} is self-adjoint so $\operatorname{Ker}\left(P^{*}\right)=\operatorname{Ker}\left(\pi_{\mu}\right)$.

Now consider the map $P:=\pi_{\mu} \circ J$, again defined on $L^{2}(\mu)$. In this case $P^{*}=-J \circ \pi_{\mu}$ and Image $(P)=\operatorname{Image}\left(\pi_{\mu}\right), \operatorname{Ker}\left(P^{*}\right)=\operatorname{Ker}\left(\pi_{\mu}\right)$ so the decomposition corresponding to P again coincides with Decomposition 2.5. On the other hand, Image $\left(P^{*}\right)=-J\left(\operatorname{Image}\left(\pi_{\mu}\right)\right)$ and $\operatorname{Ker}(P)=J^{-1}\left(\operatorname{Ker}\left(\pi_{\mu}\right)\right)=-J\left(\operatorname{Ker}\left(\pi_{\mu}\right)\right)$ so the decomposition corresponding to P^{*} is the $(-J)$-rotation of Decomposition 2.5, i.e.

$$
\begin{equation*}
L^{2}(\mu)=\operatorname{Image}\left(P^{*}\right) \oplus \operatorname{Ker}(P)=-J\left(\overline{\nabla C_{c}^{\infty}}{ }^{\mu}\right) \oplus-J\left(\operatorname{Ker}\left(d i v_{\mu}\right)\right) . \tag{6.11}
\end{equation*}
$$

Let us now introduce the following notation: given any map P defined on $L^{2}(\mu)$, let P^{\prime} denote its restriction to the closed subspace $T_{\mu} \mathcal{M}=$ Image $\left(\pi_{\mu}\right)$. Consider once again $P:=\pi_{\mu} \circ J$. Then Image $\left(P^{\prime}\right) \subseteq$ Image $\left(\pi_{\mu}\right)$ so we can think of P^{\prime} as a map $P^{\prime}: T_{\mu} \mathcal{M} \rightarrow T_{\mu} \mathcal{M}$, yielding
a decomposition $T_{\mu} \mathcal{M}=\operatorname{Image}\left(P^{\prime}\right) \oplus \operatorname{Ker}\left(P^{* *}\right)$. It is simple to check that

$$
P^{\prime *}=\left(\pi_{\mu} \circ P^{*}\right)^{\prime}=\left(\pi_{\mu} \circ(-J) \circ \pi_{\mu}\right)^{\prime}
$$

Since $\pi_{\mu} \equiv I d$ on $T_{\mu} \mathcal{M}$ we conclude that $P^{\prime *}=-P^{\prime}$, i.e. P^{\prime} is antiselfadjoint. This implies that $\operatorname{Ker}\left(P^{* *}\right)=\operatorname{Ker}\left(P^{\prime}\right)$ so

$$
\begin{equation*}
T_{\mu} \mathcal{M}=\overline{\operatorname{Image}\left(P^{\prime}\right)} \oplus \operatorname{Ker}\left(P^{\prime}\right)=\overline{T_{\mu} \mathcal{O}} \oplus \operatorname{Ker}\left(P^{\prime}\right) \tag{6.12}
\end{equation*}
$$

We can summarize this as follows.
Lemma 6.19. For any $\mu \in \mathcal{M}$ there exist orthogonal decompositions (6.13)

$$
L^{2}(\mu)=\overline{\operatorname{Ham} \mathcal{X}_{c}}{ }^{\mu} \oplus \operatorname{Ker}\left(\pi_{\mu} \circ J\right), \quad T_{\mu} \mathcal{M}=\overline{T_{\mu} \mathcal{O}} \oplus \operatorname{Ker}\left(\left(\pi_{\mu} \circ J\right)_{\mid T_{\mu} \mathcal{M}}\right)
$$

In particular, this describes the orthogonal complements of the subspaces $\overline{\operatorname{HamX}}{ }_{c}{ }^{\mu}$ and $\overline{T_{\mu} \mathcal{O}}$.

Remark 6.20. It follows from Example 6.12 that if $\mu=\delta_{x}$ then the map P^{\prime} is an isomorphism. If instead $\mu=\rho \mathcal{L}$ for some $\rho>0$ then P^{\prime} is neither injective nor surjective.

Now assume that $T_{\mu} \mathcal{O}$ is closed in $T_{\mu} \mathcal{M}$. It then follows from Decomposition 6.12 that the restriction $P^{\prime \prime}$ of P to $T_{\mu} \mathcal{O}$ gives an isomorphism $P^{\prime \prime}: T_{\mu} \mathcal{O} \rightarrow T_{\mu} \mathcal{O}$. Set $A:=-\left(P^{\prime \prime}\right)^{-1}$ so that $A^{-1}=-P^{\prime \prime}$. It is simple to check that $\Omega_{\mu}(\cdot, \cdot)=G_{\mu}(A \cdot, \cdot)$. Indeed, choose $X, Y \in T_{\mu} \mathcal{O}$. Then $X=P^{\prime \prime}(\hat{X})=\pi_{\mu} \circ J(\hat{X})$ for some $\hat{X} \in T_{\mu} \mathcal{O}$. Analogously, $Y=\pi_{\mu} \circ J(\hat{Y})$. Then, using the fact that $\hat{X} \in T_{\mu} \mathcal{M}$,

$$
\begin{aligned}
\Omega_{\mu}(X, Y) & =\int \omega(J \hat{X}, J \hat{Y}) d \mu=-\int\langle\hat{X}, J \hat{Y}\rangle d \mu \\
& =-\int\left\langle\hat{X}, \pi_{\mu}(J \hat{Y})\right\rangle d \mu=-G_{\mu}(\hat{X}, Y) \\
& =G_{\mu}(A X, Y)
\end{aligned}
$$

In other words, A is the automorphism of $T_{\mu} \mathcal{O}$ relating Ω_{μ} and G_{μ} as in Definition 6.17. In particular this proves the following result.

Lemma 6.21. Assume that $T_{\mu} \mathcal{O}$ is closed in $T_{\mu} \mathcal{M}$. Then the map

$$
\Omega_{\mu}^{b}: T_{\mu} \mathcal{O} \rightarrow T_{\mu} \mathcal{O}^{*}, \quad X \mapsto \Omega_{\mu}(X, \cdot)
$$

is an isomorphism.
Remark 6.22. If μ is a Dirac measure it is clearly the case that G_{μ} and Ω_{μ} are a compatible pair in the sense of Definition 6.17. This amounts to stating that $\left(P^{\prime \prime}\right)^{2}=\pi \circ J \circ \pi \circ J=-I d$ on $T_{\mu} \mathcal{O}$. It is not clear if this is true in general.

7. The symplectic foliation as a Poisson structure

Most naturally occurring symplectic foliations owe their existence to an underlying Poisson structure. The symplectic foliation described in Section 6.2 is no exception. The existence of a Poisson structure on a certain space of distributions was pointed out in [31]. It boils down to the fact that the symplectic structure on $\mathbb{R}^{2 d}$ adds new structure into the framework of Section 3.3. The goal of this section is to explain this in detail and to show that, reduced to \mathcal{M}, this Poisson structure coincides with the symplectic structure Ω defined in Section 6.2. We start with a brief presentation of finite-dimensional Poisson Geometry, referring to [30] for details.
7.1. Review of Poisson geometry. Recall from Section 6.1 that any symplectic structure ω on a manifold M induces a Lie bracket on the space of functions $C^{\infty}(M)$. Using the Liebniz rule for the derivative of the product of two functions, we see that the corresponding operators $\{\cdot, h\}$ have the following property:

$$
\{f g, h\}=d(f g)\left(X_{h}\right)=d f\left(X_{h}\right) g+d g\left(X_{h}\right) f=\{f, h\} g+\{g, h\} f .
$$

This leads to the following natural "weakening" of Symplectic Geometry.
Definition 7.1. Let M be a smooth manifold. A Poisson structure on M is a Lie bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ such that each operator $\{\cdot, h\}$ is a derivation on functions, i.e.

$$
\{f g, h\}=\{f, h\} g+\{g, h\} f .
$$

A Poisson manifold is a manifold endowed with a Poisson structure.
On any finite-dimensional manifold it is known that the space of derivations on functions is isomorphic to the space of vector fields. Thus on any Poisson manifold any function h defines a vector field which we denote X_{h} : it is uniquely defined by the property that

$$
d f\left(X_{h}\right)=\{f, h\}, \quad \forall f \in C^{\infty}(M) .
$$

We call X_{h} the Hamiltonian vector field defined by h. As in Section 6.1, this process defines a map

$$
\begin{equation*}
C^{\infty}(M) \rightarrow \mathcal{X}(M), \quad f \mapsto X_{f} . \tag{7.1}
\end{equation*}
$$

The kernel of this map includes the space of constant functions, but in general it will be larger. We call these the Casimir functions of the Poisson manifold. Its image defines the space $\operatorname{Ham}(M)$ of Hamiltonian
vector fields. Lemma 6.4 applies with the same proof to show that the map of Equation 7.1 is a Lie algebra homomorphism (up to sign).

At each point $x \in M$, the set of Hamiltonian vector fields evaluated at that point define a subspace of $T_{x} M$. The union of such subspaces is known as the characteristic distribution of the Poisson manifold. This distribution is involutive in the sense that M admits a smooth foliation such that each subspace is the tangent space of the corresponding leaf. In particular each leaf has a well-defined dimension, but this dimension may vary from leaf to leaf. Each leaf has a symplectic structure defined by setting

$$
\begin{equation*}
\omega\left(X_{f}, X_{g}\right):=\{f, g\} . \tag{7.2}
\end{equation*}
$$

Remark 7.2. Notice that for any given Hamiltonian vector field X_{f}, the corresponding function f is well-defined only up to Casimir functions. It is however simple to check that ω is a well-defined 2 -form on each leaf, i.e. it is independent of the particular choices made for f and g. It is also non-degenerate. The fact that ω is closed follows from the Jacobi identity for $\{\cdot, \cdot\}$.
Remark 7.3. Notice that the definition of a Poisson manifold does not include a metric. Thus there is in general no intrinsic way to extend ω to a 2 -form on M.

The following result is standard.
Proposition 7.4. Any Poisson manifold admits a symplectic foliation, of varying rank. Each leaf is preserved by the flow of any Hamiltonian vector field. Any Casimir function restricts to a constant along any leaf of the foliation.

Poisson manifolds are of interest in Mechanics because they provide the following generalization of the standard symplectic notion of Hamiltonian flows.

Definition 7.5. A Hamiltonian flow on M is a solution of the equation $d / d t\left(x_{t}\right)=X_{f}\left(x_{t}\right)$, for some function f on M.

It follows from Proposition 7.4 that if the initial data belongs to a specific leaf, then the corresponding Hamiltonian flow is completely contained within that leaf. It is simple to check that if x_{t} is Hamiltonian then f is constant along x_{t}.
7.2. Example: the dual of a Lie algebra. The theory of Lie algebras provides one of the primary classes of examples of Poisson manifolds. To explain this we introduce the following notation, once again restricting our attention to the finite-dimensional case. Let V be a
finite-dimensional vector space, whose generic element will be denoted v. Let V^{*} be its dual, with generic element ϕ. Let $V^{* *}$ be the bidual space, defined as the space of linear maps $V^{*} \rightarrow \mathbb{R}$. We will think of this as a subspace of the space of smooth maps on V^{*}, with generic element $f=f(\phi)$. We can identify V with $V^{* *}$ via the map

$$
\begin{equation*}
V \rightarrow V^{* *}, \quad v \mapsto f_{v} \text { where } f_{v}(\phi):=\phi(v) . \tag{7.3}
\end{equation*}
$$

Now assume V is a Lie algebra. We will write $V=\mathfrak{g}$. Consider the vector space \mathfrak{g}^{*} dual to \mathfrak{g}. We want to show that the Lie algebra structure on \mathfrak{g} induces a natural Poisson structure on \mathfrak{g}^{*}. Let f be a smooth function on \mathfrak{g}^{*}. Its linearization at ϕ is an element of the bidual: $\nabla f_{\mid \phi} \in \mathfrak{g}^{* *}$. It thus corresponds via the map of Equation 7.3 to an element $\delta f / \delta \phi_{\mid \phi} \in \mathfrak{g}$. We can now define a Lie bracket on \mathfrak{g}^{*} by setting:

$$
\begin{equation*}
\{f, g\}(\phi):=\phi\left(\left[\delta f / \delta \phi_{\mid \phi}, \delta g / \delta \phi_{\mid \phi}\right]\right), \tag{7.4}
\end{equation*}
$$

where $[\cdot, \cdot]$ denotes the Lie bracket on \mathfrak{g}. One can show that this operation satisfies the Jacobi identity and defines a Poisson structure on \mathfrak{g}^{*}.
Example 7.6. Assume f is a linear function on $\mathfrak{g}^{*}, f=f_{v}$ (as in Equation 7.3). Then $\delta f / \delta \phi \equiv v$, so $\left\{f_{v}, f_{w}\right\}(\phi)=\phi([v, w])$.

We now want to characterize the Hamiltonian vector fields and symplectic leaves of \mathfrak{g}^{*}. Unsurprisingly, this is best done in terms of Lie algebra theory. Every finite-dimensional Lie algebra is the Lie algebra of a (unique connected and simply connected) Lie group G. Recall from Section A. 2 the adjoint representation of G on \mathfrak{g},

$$
G \rightarrow A u t(\mathfrak{g}), \quad g \mapsto A d_{g} .
$$

Differentiating this defines the adjoint representation of \mathfrak{g} on \mathfrak{g},

$$
\begin{equation*}
a d: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g}), \quad v=d / d t\left(g_{t}\right)_{\mid t=0} \mapsto a d_{v}:=d / d t\left(A d_{g_{t}}\right)_{\mid t=0} \tag{7.5}
\end{equation*}
$$

It follows from Lemma A. 12 that $a d_{v}(w)=[v, w]$.
By duality we obtain the coadjoint representation of G on \mathfrak{g}^{*},

$$
G \rightarrow A u t\left(\mathfrak{g}^{*}\right), \quad g \mapsto\left(A d_{g^{-1}}\right)^{*} .
$$

Notice that once again we have used inversion to ensure that this remains a left action, cfr. Remark A.9. We can differentiate this to obtain the coadjoint representation of \mathfrak{g} on \mathfrak{g}^{*}, which can also be written in terms of the duals of the maps in Equation 7.5:

$$
\begin{equation*}
a d^{*}: \mathfrak{g} \rightarrow \operatorname{End}\left(\mathfrak{g}^{*}\right), \quad v \mapsto\left(-a d_{v}\right)^{*} . \tag{7.6}
\end{equation*}
$$

The following result is standard.

Lemma 7.7. The Hamiltonian vector field corresponding to a smooth function f on \mathfrak{g}^{*} is

$$
X_{f}(\phi):=\left(-a d_{\delta f / \delta \phi_{\mid}}\right)^{*}(\phi) .
$$

Thus the leaves of the symplectic foliation of \mathfrak{g}^{*} are the orbits of the coadjoint representation.
7.3. The symplectic foliation on \mathcal{M}, revisited. Following [31] we now apply the ideas of Section 7.2 to the case where \mathfrak{g} is the Lie algebra of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$. Since this is an infinite-dimensional algebra, the following discussion will be purely formal.

We saw in Remark 6.2 that \mathfrak{g} can be identified with the space of compactly-supported functions:

$$
\begin{equation*}
C_{c}^{\infty}\left(\mathbb{R}^{2 d}\right) \simeq \operatorname{Ham} \mathcal{X}_{c}\left(\mathbb{R}^{2 d}\right), \quad f \mapsto X_{f} . \tag{7.7}
\end{equation*}
$$

Its dual is then the distribution space $\left(C_{c}^{\infty}\right)^{*}$. Section 7.2 suggests that $\left(C_{c}^{\infty}\right)^{*}$ has a canonical Poisson structure, defined as in Equation 7.4. We can identify the Poisson bracket, Hamiltonian vector fields and symplectic leaves on $\left(C_{c}^{\infty}\right)^{*}$ very explicitly, as follows.

For simplicity let us restrict our attention to the linear functions on $\left(C_{c}^{\infty}\right)^{*}$ defined by functions $f \in C_{c}^{\infty}$ as follows:

$$
\begin{equation*}
F_{f}:\left(C_{c}^{\infty}\right)^{*} \rightarrow \mathbb{R}, \quad F_{f}(\mu):=\langle\mu, f\rangle . \tag{7.8}
\end{equation*}
$$

Example 7.6 shows that the Poisson bracket of two such functions F_{f} and F_{g} can be written in terms of the Lie bracket on C_{c}^{∞} :

$$
\begin{equation*}
\left\{F_{f}, F_{g}\right\}_{\left(C_{c}^{\infty}\right)^{*}}(\mu)=\left\langle\mu,\{f, g\}_{\mathbb{R}^{2 d}}\right\rangle=\left\langle\mu, \omega\left(X_{f}, X_{g}\right)\right\rangle \tag{7.9}
\end{equation*}
$$

Lemma 7.7 gives an explicit formula for the corresponding Hamiltonian vector fields $X_{F_{f}}$: at $\mu \in\left(C_{c}^{\infty}\right)^{*}, X_{F_{f}}(\mu) \in T_{\mu}\left(C_{c}^{\infty}\right)^{*}=\left(C_{c}^{\infty}\right)^{*}$ is given by

$$
\begin{aligned}
\left\langle X_{F_{f}}(\mu), g\right\rangle & =\left\langle\left(-a d_{f}\right)^{*}(\mu), g\right\rangle=\left\langle\mu,-a d_{f}(g)\right\rangle \\
& =\left\langle\mu,-\{f, g\}_{\mathbb{R}^{2 d}}\right\rangle=\left\langle\mu, d g\left(X_{f}\right)\right\rangle \\
& =-\left\langle\operatorname{div}_{\mu}\left(X_{f}\right), g\right\rangle .
\end{aligned}
$$

In other words, $X_{F_{f}}(\mu)=-\operatorname{div}_{\mu}\left(X_{f}\right)$.
Lemma 7.7 also shows that the leaves of the symplectic foliation are the orbits of the coadjoint representation of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ on $\left(C_{c}^{\infty}\right)^{*}$. Let us identify the coadjoint representation explicitly. Recall from Lemma A. 20 that the adjoint representation of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ on $\operatorname{Ham} \mathcal{X}_{c}$ is the push-forward operation. Lemma 6.3 shows that, under the isomorphism of Equation 7.7, push-forward becomes composition. Thus the
adjoint representation of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ on $\operatorname{Ham} \mathcal{X}_{c}$ corresponds to the following representation of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ on $C_{c}^{\infty}\left(\mathbb{R}^{2 d}\right)$:

$$
\begin{equation*}
A d: \operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right) \rightarrow \operatorname{Aut}\left(C_{c}^{\infty}\left(\mathbb{R}^{2 d}\right)\right), \quad A d_{\phi}(f):=f \circ \phi^{-1} \tag{7.10}
\end{equation*}
$$

The following calculation then shows that the coadjoint representation of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ on $\left(C_{c}^{\infty}\right)^{*}$ is simply the natural action of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ introduced in Section 3.3:

$$
\left.\left\langle A d_{\phi^{-1}}\right)^{*}(\mu), f\right\rangle=\left\langle\mu, A d_{\phi^{-1}}(f)\right\rangle=\langle\mu, f \circ \phi\rangle=\langle\phi \cdot \mu, f\rangle .
$$

The symplectic structure on each leaf is given by Equation 7.2:

$$
\begin{equation*}
\omega_{\mu}\left(-\operatorname{di} v_{\mu}\left(X_{f}\right),-\operatorname{di} v_{\mu}\left(X_{g}\right)\right):=\{f, g\}_{\left(C_{c}^{\infty}\right)^{*}}(\mu)=\left\langle\mu, \omega\left(X_{f}, X_{g}\right)\right\rangle . \tag{7.11}
\end{equation*}
$$

Remark 7.8. Notice that Poisson brackets and Hamiltonian vector fields are of first order with respect to the functions involved. We can use this fact to reduce the study of general functions $F:\left(C_{c}^{\infty}\right)^{*} \rightarrow \mathbb{R}$ to the study of linear functions on $\left(C_{c}^{\infty}\right)^{*}$, as presented above. For example if $\nabla_{\mu} F=\nabla_{\mu} F_{f}$, for some linear F_{f} as above, then $X_{F}(\mu)=X_{F_{f}}(\mu)$.

Let us now restrict our attention to $\mathcal{M} \subset\left(C_{c}^{\infty}\right)^{*}$. We want to show that the data defined by the Poisson structure on $\left(C_{c}^{\infty}\right)^{*}$ restricts to the objects defined in Section 6.2. Firstly, \mathcal{M} is $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$-invariant and the action of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ on $\left(C_{c}^{\infty}\right)^{*}$ restricts to the standard pushforward action on \mathcal{M}. This shows that the leaves defined above, passing through \mathcal{M}, coincide with the \mathcal{G}-orbits of Section 6.2. Now recall from Section 3.3 that, given $\mu \in \mathcal{M}$, the operator $-\operatorname{div}_{\mu}$ is the natural isomorphism relating the tangent planes of Definition 2.5 to the tangent planes of $\mathcal{M} \subset\left(C_{c}^{\infty}\right)^{*}$. Equation 7.11 can thus be re-written as

$$
\omega_{\mu}\left(\pi_{\mu}\left(X_{f}\right), \pi_{\mu}\left(X_{g}\right)\right):=\int_{\mathbb{R}^{2 d}} \omega\left(X_{f}, X_{g}\right) d \mu
$$

showing that the symplectic structure defined this way coincides with the symplectic form Ω_{μ} defined in Equation 6.9.

We can also use this framework to justify Definition 6.16 by showing that the Hamiltonian vector fields defined there formally coincide with the Hamiltonian vector fields of the restricted Poisson structure. Let $F: \mathcal{M} \rightarrow \mathbb{R}$ be a differentiable function on \mathcal{M}. Fix $\mu \in \mathcal{M}$. Up to L_{μ}^{2}-closure, we can assume that $\nabla_{\mu} F=\nabla f$, for some $f \in C_{c}^{\infty}\left(\mathbb{R}^{2 d}\right)$. Example 4.13 shows that $\nabla f=\nabla_{\mu} F_{f}$, where F_{f} is the linear function defined in Equation 7.8. Using Remark 7.8, the Hamiltonian vector of F at μ defined by the Poisson structure is thus $X_{F}(\mu)=X_{F_{f}}(\mu)=$ -div $\mu_{\mu}\left(X_{f}\right)$. In terms of the tangent space $T_{\mu} \mathcal{M}$, we can write this as

$$
\begin{equation*}
X_{F}(\mu)=\pi_{\mu}\left(X_{f}\right)=\pi_{\mu}(-J \nabla f)=\pi_{\mu}\left(-J \nabla_{\mu} F\right) \tag{7.12}
\end{equation*}
$$

It thus coincides with the vector field given in Definition 6.16.
Remark 7.9. The identification of $\left(C_{c}^{\infty}\right)^{*}$ with the dual Lie algebra of $\operatorname{Ham}_{c}\left(\mathbb{R}^{2 d}\right)$ relied on the normalization introduced in Remark 6.2. In turn, this was based on our choice to restrict our attention to diffeomorphisms with compact support. In some situations one might want to relax this assumption. This would generally mean losing the possibility of a normalization so Equation 6.3 would leave us only with an identification $\operatorname{Ham} \mathcal{X} \simeq C^{\infty}(M) / \mathbb{R}$. Dualizing this space would then, roughly speaking, yield the space of measures of integral zero: we would thus get a Poisson structure on this space but not on \mathcal{M}. However this issue is purely technical and can be avoided by changing Lie group, as follows.

Consider the group G of diffeomorphisms on $\mathbb{R}^{2 d} \times \mathbb{R}$ preserving the contact form $d z-y^{i} d x^{i}$. It can be shown that its Lie algebra is isomorphic to the space of functions on $\mathbb{R}^{2 d} \times \mathbb{R}$ which are constant with respect to the new variable z : it is thus isomorphic to the space of functions on $\mathbb{R}^{2 d}$, so the dual Lie algebra is, roughly, the space of measures on $\mathbb{R}^{2 d}$; in particular, it contains \mathcal{M} as a subset. This group has a onedimensional center $Z \simeq \mathbb{R}$, defined by translations with respect to z. The center acts trivially in the adjoint and coadjoint representations, so the coadjoint representation reduces to a representation of the group G / Z, which one can show to be isomorphic to the group of Hamiltonian diffeomorphisms of $\mathbb{R}^{2 d}$. The coadjoint representation of G reduces to the standard push-forward action of Hamiltonian diffeomorphisms, and the theory can now proceed as before.

Appendix A. Review of some notions of Diff. Geometry

The goal of the first two sections of this appendix is to summarize standard facts concerning Lie groups and calculus on finite-dimensional manifolds, thus laying out the terminology, notation and conventions which we use throughout this paper. The third section provides some basic facts concerning the infinite-dimensional Lie groups relevant to this paper. We refer to [25] and [30] for details.
A.1. Calculus of vector fields and differential forms. Let M be a connected differentiable manifold of dimension D, not necessarily compact. Let $\operatorname{Diff}(M)$ denote the group of diffeomorphisms of M. Let $C^{\infty}(M)$ denote the space of smooth functions on M. Let $T M$ denote the tangent bundle of M and $\mathcal{X}(M)$ the corresponding space of sections, i.e. the space of smooth vector fields. Let $T^{*} M$ denote the cotangent bundle of M. To simplify notation, $\Lambda^{k} M$ will denote both the bundle
of k-forms on M and the space of its sections, i.e the space of smooth k-forms on M. Notice that $\Lambda^{0}(M)=C^{\infty}(M)$ and $\Lambda^{1} M=T^{*} M$ (or the space of smooth 1 -forms).

Let $\phi \in \operatorname{Diff}(M)$. Taking its differential yields linear maps

$$
\begin{equation*}
\nabla \phi: T_{x} M \rightarrow T_{\phi(x)} M, \quad v \mapsto \nabla \phi \cdot v \tag{A.1}
\end{equation*}
$$

thus a bundle map which we denote $\nabla \phi: T M \rightarrow T M$. We will call $\nabla \phi$ the lift of ϕ to $T M$.

By duality we obtain linear maps

$$
(\nabla \phi)^{*}: T_{\phi(x)}^{*} M \rightarrow T_{x}^{*} M, \quad \alpha \mapsto \alpha \circ \nabla \phi
$$

and more generally k-multilinear maps

$$
\begin{equation*}
(\nabla \phi)^{*}: \Lambda_{\phi(x)}^{k} M \rightarrow \Lambda_{x}^{k} M, \quad \alpha \mapsto \alpha(\nabla \phi \cdot, \ldots, \nabla \phi \cdot) \tag{A.2}
\end{equation*}
$$

This defines bundle maps $(\nabla \phi)^{*}: \Lambda^{k} M \rightarrow \Lambda^{k} M$ which we call the lift of ϕ to $\Lambda^{k} M$.

Remark A.1. Notice the different behaviour under composition of diffeomorphisms: $\nabla(\phi \circ \psi)=\nabla \phi \circ \nabla \psi$ while $(\nabla(\phi \circ \psi))^{*}=(\nabla \psi)^{*} \circ(\nabla \phi)^{*}$. We will take this into account and generalize it in Section A. 2 via the notion of left versus right group actions.

We can of course apply these lifted maps to sections of the corresponding bundles. In doing so one needs to ensure that the correct relationship between $T_{x} M$ and $T_{\phi(x)} M$ is maintained; we emphasize this with a change of notation, as follows.

The push-forward operation on vector fields is defined by

$$
\begin{equation*}
\phi_{*}: \mathcal{X}(M) \rightarrow \mathcal{X}(M), \quad \phi_{*} X:=(\nabla \phi \cdot X) \circ \phi^{-1} \tag{A.3}
\end{equation*}
$$

The corresponding operation on k -forms is the pull-back, defined by

$$
\begin{equation*}
\phi^{*}: \Lambda^{k}(M) \rightarrow \Lambda^{k}(M), \quad \phi^{*} \alpha:=\left((\nabla \phi)^{*} \alpha\right) \circ \phi . \tag{A.4}
\end{equation*}
$$

Definition A.2. Let V be a vector space. A bilinear antisymmetric operation

$$
V \times V \rightarrow V, \quad(v, w) \mapsto[v, w]
$$

is a Lie bracket if it satisfies the Jacobi identity

$$
[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0 .
$$

A Lie algebra is a vector space endowed with a Lie bracket.
The space of smooth vector fields has a natural Lie bracket. Given two vector fields X, Y on M, we define $[X, Y]$ in local coordinates as follows:

$$
[X, Y]:=\nabla Y \cdot X-\nabla X \cdot Y
$$

It is simple to show that this operation indeed satisfies the Jacobi identity. Let ϕ_{t} denote the flow of X on \mathbb{R}^{D}, i.e. the 1-parameter group of diffeomorphisms obtained by integrating X as follows:

$$
\begin{equation*}
d / d t\left(\phi_{t}(x)\right)=X\left(\phi_{t}(x)\right), \quad \phi_{0}(x)=x \tag{A.5}
\end{equation*}
$$

It is then simple to check that

$$
\begin{equation*}
[X, Y]=-d / d t\left(\phi_{t *} Y\right)_{\mid t=0}=d / d t\left(\phi_{-t *} Y\right)_{\mid t=0}=d / d t\left(\left(\phi_{t}^{-1}\right)_{*} Y\right)_{\mid t=0} \tag{A.6}
\end{equation*}
$$

Equation A. 6 gives a coordinate-free expression for the Lie bracket. It also suggests an analogous operation for more general tensor fields. We will restrict our attention to the case of differential forms.

Let α be a smooth k -form on M. Let X, ϕ_{t} be as above. We define the Lie derivative of α in the direction of X to be the k -form defined as follows:

$$
\begin{equation*}
\mathcal{L}_{X} \alpha:=d / d t\left(\phi_{t}^{*} \alpha\right)_{\mid t=0} . \tag{A.7}
\end{equation*}
$$

The fact that $t \mapsto \phi_{t}$ is a homomorphism leads to the fact that $d / d t\left(\phi_{t}^{*} \alpha\right)_{\mid t=t_{0}}=\phi_{t_{0}}^{*}\left(\mathcal{L}_{X} \alpha\right)$. Thus $\mathcal{L}_{X} \alpha \equiv 0$ if and only if $\phi_{t}^{*} \alpha \equiv \alpha$, i.e. ϕ_{t} preserves α. This can be generalized to time-dependent vector fields as follows.

Lemma A.3. Let X_{t} be a t-dependent vector field on M. Let $\phi_{t}=$ $\phi_{t}(x)$ be its flow, defined by

$$
\begin{equation*}
d / d t\left(\phi_{t}(x)\right)=X_{t}\left(\phi_{t}(x)\right), \quad \phi_{0}(x)=x . \tag{A.8}
\end{equation*}
$$

Let α be a k-form on M. Then $d / d t\left(\phi_{t}^{*} \alpha\right)_{\mid t_{0}}=\phi_{t_{0}}^{*}\left(\mathcal{L}_{X_{t_{0}}} \alpha\right)$. In particular, $\phi_{t}^{*} \alpha \equiv \alpha$ iff $\mathcal{L}_{X_{t}} \alpha \equiv 0$.
Proof: For any fixed s, let ψ_{t}^{s} be the flow of X_{s}, i.e.

$$
d / d t\left(\psi_{t}^{s}(x)\right)=X_{s}\left(\psi_{t}^{s}(x)\right), \quad \psi_{0}^{s}(x)=x
$$

Then $\psi_{t}^{t_{0}} \circ \phi_{t_{0}}(x)$ satisfies

$$
d / d t\left(\psi_{t}^{t_{0}} \circ \phi_{t_{0}}(x)\right)_{\mid t=0}=X_{t_{0}}\left(\phi_{t_{0}}(x)\right), \quad \psi_{0}^{t_{0}} \circ \phi_{t_{0}}(x)=\phi_{t_{0}}(x)
$$

so $\psi_{t}^{t_{0}} \circ \phi_{t_{0}}(x)$ at $t=0$ and ϕ_{t} at $t=t_{0}$ coincide up to first order, showing that

$$
\begin{aligned}
d / d t\left(\phi_{t}^{*} \alpha\right)_{\mid t=t_{0}} & =d / d t\left(\left(\psi_{t}^{t_{0}} \circ \phi_{t_{0}}\right)^{*} \alpha\right)_{\mid t=0} \\
& =\phi_{t_{0}}^{*}\left(d / d t\left(\left(\psi_{t}^{t_{0}}\right)^{*} \alpha\right)_{\mid t=0}\right)=\phi_{t_{0}}^{*}\left(\mathcal{L}_{X_{t_{0}}} \alpha\right) .
\end{aligned}
$$

QED.

Notice that if we define $\phi^{*} Y:=\left(\phi^{-1}\right)_{*} Y$ and we define $\mathcal{L}_{X} Y:=$ $d / d t\left(\phi_{t}^{*} Y\right)_{\mid t=0}$, then Equation A. 6 shows that $\mathcal{L}_{X} Y=[X, Y]$.

Remark A.4. Various formulae relate the above operations, leading to quick proofs of useful facts. For example, the fact

$$
\begin{equation*}
\mathcal{L}_{[X, Y]} \alpha=\mathcal{L}_{X}\left(\mathcal{L}_{Y} \alpha\right)-\mathcal{L}_{Y}\left(\mathcal{L}_{X} \alpha\right) \tag{A.9}
\end{equation*}
$$

shows that if the flows of X and Y preserve α then so does the flow of [$X, Y]$. Also,

$$
\begin{equation*}
\phi^{*} \mathcal{L}_{X} \alpha=\mathcal{L}_{\phi^{*} X} \phi^{*} \alpha \tag{A.10}
\end{equation*}
$$

Remark A.5. Notice that $\mathcal{L}_{X} Y$ is not a "proper" directional derivative in the sense that it is of first order also in the vector field X. In general the same is true for the Lie derivative of any tensor. The case of 0 forms, i.e. functions, is an exception. In this case $\mathcal{L}_{X} f=d f(X)$ is of order zero in X and coincides with the usual notion of directional derivative. We will often simplify the notation by writing it as $X f$.

We now want to introduce the exterior differentiation operator on smooth forms. Let α be a k-form on M. Fix any point $x \in M$ and tangent vectors $X_{0}, \ldots, X_{k} \in T_{x} M$. Choose any extension of each X_{j} to a global vector field which we will continue to denote X_{j}. Then, at x,

$$
\begin{array}{ll}
d \alpha\left(X_{0}, \ldots, X_{k}\right) & :=\sum_{j=0}^{k}(-1)^{j} X_{j} \alpha\left(X_{0}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right) \\
\text { (A.11) } & =\sum_{j<l}(-1)^{j+l} \alpha\left(\left[X_{j}, X_{l}\right], X_{0}, \ldots, \hat{X}_{j}, \ldots, \hat{X}_{l}, \ldots, X_{k}\right) \tag{A.11}
\end{array}
$$

where on the right hand side the subscript ^ denotes an omitted term and we adopt the notation for directional derivatives introduced in Remark A.5.

Lemma A.6. $d \alpha$ is a well-defined ($k+1$)-form, i.e. at any point $x \in M$ it is independent of the choice of the extension. Exterior differentiation defines a first-order linear operator

$$
\begin{equation*}
d: \Lambda^{k} M \rightarrow \Lambda^{k+1} M \tag{A.12}
\end{equation*}
$$

satisfying $d \circ d=0$.
Remark A.7. It is not clear from the above definition that $d \alpha$ is tensorial in X_{0}, \ldots, X_{k}, i.e. that it is independent of the choice of extensions. The point is that cancelling occurs to eliminate the first derivatives of X_{j} which appear in Equation A.11. This is the main content of Lemma A.6, which is proved by showing that Equation
A. 11 is equivalent to the usual, local-coordinate, definition of $d \alpha$. For example, let $\alpha=\sum_{i=1}^{D} \alpha_{i}(x) d x^{i}$ be a smooth 1 -form on \mathbb{R}^{D}. Then $d \alpha=\sum_{j<i}\left(\frac{\partial \alpha_{i}}{\partial x^{j}}-\frac{\partial \alpha_{j}}{\partial x^{i}}\right) d x^{j} \wedge d x^{i}$. If we identify α with the vector field $x \rightarrow\left(\alpha_{1}(x), \cdots, \alpha_{D}(x)\right)^{T}$ then $d \alpha(X, Y)=\left\langle\left(\nabla \alpha-\nabla \alpha^{T}\right) X, Y\right\rangle$.

Given a k-form α and a vector field X, let $i_{X} \alpha$ denote the (k-1)form $\alpha(X, \cdot, \ldots, \cdot)$ obtained by contraction. Then the Lie derivative and exterior differentiation are related by Cartan's formula:

$$
\begin{equation*}
\mathcal{L}_{X} \alpha=d i_{X} \alpha+i_{X} d \alpha . \tag{A.13}
\end{equation*}
$$

A.2. Lie groups and group actions. Recall that a group G is a Lie group if it has the structure of a smooth manifold and group multiplication (respectively, inversion) defines a smooth map $G \times G \rightarrow G$ (respectively, $G \rightarrow G$). We denote by e the identity element of G.

Definition A.8. We say that G has a left action or acts on the left or, more simply, acts on a smooth manifold M if there is a smooth map

$$
G \times M \rightarrow M, \quad(g, x) \mapsto g \cdot x
$$

such that $g \cdot(h \cdot x)=(g h) \cdot x$. To simplify the notation we will often write $g x$ rather than $g \cdot x$. It is simple to see that if G acts to the left on M then every $g \in G$ defines a diffeomorphism of M. More specifically, the action defines a group homomorphism $G \rightarrow \operatorname{Diff}(M)$.

We say that G has a right action or acts on the right on M if the opposite composition rule holds: $g \cdot(h \cdot x)=h g \cdot x$. In this case it is standard to change the notation, writing $x \cdot g$ rather than $g \cdot x$: this makes the composition rule seem more natural but does not affect the substance of the definition, i.e. the fact that the induced map $G \rightarrow \operatorname{Diff}(M)$ is now a group antihomomorphism.

Remark A.9. Notice that any left action induces a natural right action as follows: $x \cdot g:=g^{-1} \cdot x$. Conversely, any right action induces a natural left action: $g \cdot x:=x \cdot g^{-1}$.

For any group action we can repeat the constructions of Equations A. 1 and A.2. For example a left action of G on M induces a lifted left action of G on $T M$ as follows:

$$
G \times T M \rightarrow T M, \quad g(x, v):=(g x, \nabla g \cdot v) .
$$

However, we need to apply the trick introduced in Remark A. 9 to obtain a coherent lifted action on $T^{*} M$ or $\Lambda^{k} M$. For example we can define a lifted left action by setting

$$
G \times \Lambda^{k} M \rightarrow \Lambda^{k} M, \quad g(x, \alpha):=\left(g x,\left(\nabla g^{-1}\right)^{*} \alpha\right)
$$

or a lifted right action by setting

$$
G \times \Lambda^{k} M \rightarrow \Lambda^{k} M, \quad g(x, \alpha):=\left(g^{-1} x,(\nabla g)^{*} \alpha\right) .
$$

We can also repeat the constructions of Equations A. 3 and A.4. We thus find an induced action of G on vector fields, defined by

$$
\begin{equation*}
G \times \mathcal{X} \rightarrow \mathcal{X}, \quad g \cdot X:=g_{*} X \tag{A.14}
\end{equation*}
$$

Like-wise, there is an induced action of G on k-forms. On the other hand, with respect to Section A. 1 there now exists a new operation, as follows. Choose $v=d / d t\left(g_{t}\right)_{\mid t=0} \in T_{e} G$. For any $x \in M$ we can define the tangent vector $v(x):=d / d t\left(g_{t} \cdot x\right)_{\mid t=0}$. This defines a global vector field on M, called the fundamental vector field associated to v. We have thus built a map $T_{e} G \rightarrow \mathcal{X}$.

Let us now specialize to the case $M=G$. Any Lie group G admits two natural left actions on itself. Studying these actions leads to a deeper understanding of the geometry of Lie groups, thus of group actions. The first action is given by left translations, as follows:

$$
L: G \times G \rightarrow G, \quad(g, h) \mapsto L_{g}(h):=g h .
$$

Let $e \in G$ denote the identity element. Fix $v=d / d t\left(g_{t}\right)_{\mid t=0} \in T_{e} G$. The differential ∇L_{g} maps $T_{e} G$ to $T_{g} G$. We may thus define a global vector field X_{v} on G by setting $X_{v}(g):=\nabla L_{g} \cdot v=d / d t\left(g g_{t}\right)_{\mid t=0}$. This vector field has the property of being left-invariant with respect to the action of G, i.e. $L_{g *} X_{v}=X_{v}$. Viceversa, any left-invariant vector field arises this way.
Remark A.10. Given any $v \in T_{e} G$, we have now defined two constructions of a global vector field on G associated to v : the fundamental vector field v and the left-invariant vector field X_{v}. The relationship between these constructions can be clarified as follows. There is a natural right action of G on itself, defined by right translations

$$
L: G \times G \rightarrow G, \quad(g, h) \mapsto R_{g}(h):=h g .
$$

As above, the differentials define a global vector field $\nabla R_{g} \cdot v$. It is simple to check that this vector field coincides with the fundamental vector field v. It is right-invariant, i.e. $R_{g *} v=v$.
Lemma A.11. The set of left-invariant vector fields is a finite dimensional vector space isomorphic to $T_{e} G$. The Lie bracket of left-invariant vector fields is a left-invariant vector field.
It follows from Lemma A. 11 that $T_{e} G$ admits a natural operation $[v, w]$ such that $X_{[v, w]}=\left[X_{v}, X_{w}\right]$. It follows from the Jacobi identity on vector fields that $T_{e} G$ equipped with this structure is a Lie algebra: we call it the Lie algebra of G and denote it by \mathfrak{g}.

The second action of G on itself is the adjoint action defined by the inner automorphisms $I_{g}(h):=g h g^{-1}$. Each of these fixes the identity and thus defines a map

$$
\begin{equation*}
A d_{g}:=\nabla I_{g}: T_{e} G \rightarrow T_{e} G \tag{A.15}
\end{equation*}
$$

i.e. an automorphism of $T_{e} G$. In other words the adjoint action of G on G induces a left action of G on $T_{e} G$ called the adjoint representation of G.

The adjoint representation of G provides a useful way to calculate Lie brackets on \mathfrak{g}, as follows.

Lemma A.12. Fix $v, w \in \mathfrak{g}$. Assume $v=d / d t\left(g_{t}\right)_{\mid t=0}$ for some $g_{t} \in G$. Then $[v, w]=d / d t\left(A d_{g_{t}} w\right)_{\mid t=0}$.

Proof: Assume $w=d / d s\left(h_{s}\right)_{\mid s=0}$. By definition,

$$
\begin{equation*}
d / d t\left(A d_{g_{t}}(w)\right)_{\mid t=0}=d / d t d / d s\left(g_{t} h_{s} g_{t}^{-1}\right)_{\mid t, s=0} \tag{A.16}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
X_{v}(g)=\nabla L_{g}(v)=d / d t\left(g g_{t}\right)_{\mid t=0}=d / d t\left(R_{g_{t}}(g)\right)_{\mid t=0} . \tag{A.17}
\end{equation*}
$$

In particular this shows that, for $t=0, R_{g_{t}}$ coincides with the flow of X_{v} up to first order. Thus

$$
\begin{aligned}
{[v, w] } & =\left(\mathcal{L}_{X_{v}} X_{w}\right)_{\mid e}=d / d t\left(\left(R_{g_{t}}\right)^{*} X_{w}\right)_{\mid e ; t=0}=d / d t\left(\left(R_{g_{t}^{-1}}\right)_{*} X_{w}\right)_{\mid e ; t=0} \\
& =d / d t\left(\left.\left(\nabla R_{g_{t}^{-1}}\right)_{\mid g_{t}} X_{w \mid g_{t}}\right|_{\mid t=0}=d / d t\left(\left(\nabla R_{g_{t}^{-1}}\right)_{g_{t}} d / d s\left(g_{t} h_{s}\right)_{\mid s=0}\right)_{t=0}\right. \\
& =d / d t d / d s\left(g_{t} h_{s} g_{t}^{-1}\right)_{\mid s, t=0} .
\end{aligned}
$$

Remark A.13. It is sometimes useful to distinguish the vector space $T_{e} G$ from the Lie algebra \mathfrak{g}, so as to distinguish between maps or constructions which involve the Lie bracket and those which do not. Our notation will sometimes reflect this.

For example, one can show that the construction of fundamental vector fields actually defines a Lie algebra homomorphism $\mathfrak{g} \rightarrow \mathcal{X}$. Analogously one can show that every $A d_{g}$ is an automorphism of \mathfrak{g}, i.e. it preserves the Lie algebra structure: $A d_{g}([v, w])=\left[A d_{g} v, A d_{g} w\right]$.

Let us now return to the general case of a Lie group acting on a manifold M. We can apply the above information on the geometry of Lie groups to develop a better understanding of the geometric aspects of the group action.

Definition A.14. Assume G acts on M. Fix $x \in M$. The orbit of x in M is the subset

$$
\mathcal{O}_{x}:=\{g \cdot x: g \in G\} \subseteq M
$$

Notice that $\mathcal{O}_{g x}=\mathcal{O}_{x}$. The stabilizer of x in G is the closed subgroup

$$
G_{x}:=\{g \in G: g \cdot x=x\} \subseteq G
$$

This is again a Lie group. We denote its Lie algebra \mathfrak{g}_{x} : it is a subalgebra of \mathfrak{g}. It is simple to check that $G_{g x}=g \cdot G_{x} \cdot g^{-1}$ and that $\mathfrak{g}_{g x}=A d_{g}\left(\mathfrak{g}_{x}\right)$.
Lemma A.15. Assume G acts on M. Then:
(1) Each quotient group G / G_{x} has a smooth structure. The projection $G \rightarrow G / G_{x}$ is a smooth map. Its differential gives an identification $T_{e} G / T_{e} G_{x}=T_{e}\left(G / G_{x}\right)$.
(2) The group action defines a smooth 1:1 immersion $j: G / G_{x} \rightarrow$ M with image \mathcal{O}_{x}. Thus \mathcal{O}_{x} is a smooth immersed (not necessarily embedded) submanifold of M. In particular the group action defines a smooth foliation of M, the leaves being the orbits of the action.
(3) Let \mathcal{O} be any orbit in M. For any $x \in \mathcal{O}$, fundamental vector fields provide a surjective map

$$
\begin{equation*}
q_{x}: T_{e} G \rightarrow T_{x} \mathcal{O}, \quad v=d / d t\left(g_{t}\right)_{\mid t=0} \mapsto v(x)=d / d t\left(g_{t} x\right)_{\mid t=0} \tag{A.18}
\end{equation*}
$$

with kernel $T_{e} G_{x}$. The corresponding identification $T_{e} G / T_{e} G_{x}=$ $T_{x} \mathcal{O}$ coincides with $\nabla j: T_{e} G / T_{e} G_{x} \rightarrow T_{x} \mathcal{O}$.

Remark A.16. Assume $x, y \in M$ belong to the same orbit, i.e. $y=$ $g x$ for some $g \in G$. The lifted action of G on $T M$ then induces an isomorphism $\nabla g: T_{x} M \rightarrow T_{y} M$ which preserves the tangent spaces to the orbit. Choose $v=d / d t\left(g_{t} x\right)_{\mid t=0} \in T_{x} \mathcal{O}$. Then

$$
\begin{equation*}
\nabla g(v)=d / d t\left(g g_{t} x\right)_{t=0}=d / d t\left(g g_{t} g^{-1} g x\right)_{\mid t=0}=A d_{g}(v)(y) . \tag{A.19}
\end{equation*}
$$

In other words, the following diagram is commutative:

where q_{x} and q_{y} denote the maps of Equation A.18.
Definition A.17. Assume G acts on M. A differential form α on M is G-invariant if, for all $g \in G, g^{*} \alpha=\alpha$. We will denote by $\Lambda^{k}\left(M^{G}\right)$ the space of G-invariant k-forms on M.

For the purposes of Section 4.2 (cfr. in particular Remark 4.8), the following example is particularly interesting. Assume M is a Lie group G. Choose a closed subgroup H of G and consider the right action of H on G defined by right multiplication. Fundamental vector fields provide an identification $T_{e} G \rightarrow T_{g} G$ for any $g \in G$, i.e. a parallelization of G. Using this identification we can identify the space of all k -forms $\Lambda^{k}(G)$ with the space of maps $G \rightarrow \Lambda^{k}\left(T_{e} G\right)$. The space of invariant k-forms on G can then be written

$$
\begin{aligned}
\Lambda^{k}\left(G^{H}\right) & :=\left\{\alpha \in \Lambda^{k}(G): R_{h}{ }^{*} \alpha=\alpha\right\} \\
& =\left\{\alpha: G \rightarrow \Lambda^{k}\left(T_{e} G\right): \alpha(g h)=\alpha(g), \quad \forall g \in G, \forall h \in H\right\} \\
& =\left\{\alpha: G / H \rightarrow \Lambda^{k}\left(T_{e} G\right)\right\} .
\end{aligned}
$$

It may be useful to emphasize that the latter is not the space of k -forms on G / H.

Remark A.18. Recall that, given any k-form on M and diffeomorphism $\phi \in \operatorname{Diff}(M), d\left(\phi^{*} \alpha\right)=\phi^{*}(d \alpha)$. In particular, the space of invariant forms is preserved by the operator d so it defines G-invariant de Rham cohomology groups. We refer to [10] Section V. 12 for details, in particular for the relationship with the standard de Rham cohomology of M.
A.3. The group of diffeomorphisms. Let $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ denote the set of diffeomorphisms of \mathbb{R}^{D} with compact support, i.e. those which coincide with the identity map $I d$ outside of a compact subset of \mathbb{R}^{D}. Composition of maps clearly yields a group structure on $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$. It is possible to endow $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ with the structure of an infinitedimensional Lie group in the sense of [35]. A local model is provided by the space $\mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$, endowed as in Section 2.1 with the structure of a topological vector space. More specifically, we can apply the construction outlined in Remark A. 21 below to build a local chart \mathcal{U} for $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ near the identity element $I d$. This yields by definition an isomorphism $T_{I d} \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) \simeq \mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$. We can then use right multiplication to build charts $\mathcal{U}_{\phi}:=\{u \circ \phi: u \in \mathcal{U}\}$ around any $\phi \in \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$, leading to $T_{\phi} \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right) \simeq\left\{X \circ \phi: X \in \mathcal{X}_{c}\left(\mathbb{R}^{D}\right)\right\}$. Thoughout this article we will generally restrict our attention to the connected component of $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ containing $I d$.

Remark A.19. It may be useful to emphasize that defining charts on $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ as above leads to the following interpretation of Equation A.8: ϕ_{t} is a smooth path on $\operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ and $X_{t} \circ \phi_{t} \in T_{\phi_{t}} \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$ is its tangent vector field.

As usual one can define the Lie algebra to be the tangent space at $I d$. The Lie bracket $[\cdot, \cdot]_{\mathfrak{g}}$ on this space can then be defined as in Section A.2, cfr. [35].

Lemma A.20. The adjoint representation of Diff $\left(\mathbb{R}^{D}\right)$ on $\mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$ coincides with the push-forward operation: $A d_{\phi}(X)=\phi_{*}(X)$. Furthermore, the Lie bracket on $\mathcal{X}_{c}\left(\mathbb{R}^{D}\right)$ induced by the Lie group structure on $D_{i f f}^{c}\left(\mathbb{R}^{D}\right)$ is the negative of the standard Lie bracket on vector fields.
Proof: Assume that X integrates to $\phi_{t} \in \operatorname{Diff}_{c}\left(\mathbb{R}^{D}\right)$. Then

$$
A d_{\phi}(X)=d / d t\left(\phi \circ \phi_{t} \circ \phi^{-1}\right)_{\mid t=0}=\nabla \phi_{\mid \phi^{-1}} \cdot X_{\mid \phi^{-1}}=\phi_{*}(X) .
$$

As in Lemma A. 12 we can calculate the Lie bracket by differentiating the adjoint representation. Thus:

$$
[X, Y]_{\mathfrak{g}}=d / d t\left(A d_{\phi_{t}} Y\right)_{\mid t=0}=d / d t\left(\phi_{t *} Y\right)_{\mid t=0}=-[X, Y]
$$

QED.

Remark A.21. A similar construction proves that for any compact (respectively, noncompact) manifold M the group of diffeomorphisms $\operatorname{Diff}(M)$ (respectively, $\operatorname{Diff}_{c}(M)$) is an infinite-dimensional Lie group in the sense of [35]. Some care has to be exercised however in all these constructions, specifically in the definition of the local chart near Id. The naive choice

$$
\mathcal{X}(M) \rightarrow \operatorname{Diff}(M), \quad X \mapsto \phi_{1}
$$

where ϕ_{1} is the time $t=1$ diffeomorphism obtained by integrating X to the flow ϕ_{t}, is not possible as it does not cover an open neighbourhood of Id, cfr. [35] Warning 1.6. Instead, the standard trick is to notice that diffeomorphisms near $I d$ are in a 1:1 relationship (via their graphs) with smooth submanifolds close to the diagonal $\Delta \subset M \times M$. These submanifolds can then be parametrized as follows. Assume $E \rightarrow M$ is a vector bundle over M. Let Z denote its zero section and U denote an open neighbourhood of Z. Assume one can find a diffeomorphism $\zeta: U \rightarrow M \times M$ sending Z to Δ. Then diffeomorphisms of M near $I d$ correspond to smooth submanifolds of E near Z, i.e. smooth sections. For example, to construct a chart for diffeomorphisms close to $I d$ we would use $E:=T M$ setting ζ to be the Riemannian exponential map (with respect to a fixed metric on M).

Good choices of E and ζ for $\operatorname{Diff}(M)$ can yield as a by-product the fact that specific subgroups G of $\operatorname{Diff}(M)$ also admit Lie group structures such that the natural immersion $G \rightarrow \operatorname{Diff}(M)$ is smooth. For example, to prove this fact for the subgroups of symplectomorphisms
or Hamiltonian diffeomorphisms of a symplectic manifold (M, ω) (see Section 6.1) one can choose $E:=T^{*} M$ and the ζ defined by Weinstein's "Lagrangian neighbourhood theorem", cfr. [43] Section 6 or [34] Proposition 3.34.

Acknowledgments. The authors wish to thank L. Ambrosio, Y. Brenier, A. Fathi, E. Ghys, M. Loss and C. Villani for fruitful conversations. They also thank B. Khesin, P. Lee and J. Lott for preliminary versions of their work [23] and [26], and A. Weinstein for suggesting the relevance of the work [31]. TP would also like to thank D. Burghelea, J. Ebert, D. Fox, A. Ghigi and D. Joyce for useful discussions, and his wife Lynda for her encouragement and support.

WG gratefully acknowledges the support provided by NSF grants DMS-03-54729 and DMS-06-00791. HKK gratefully acknowledges RA support provided by NSF grants DMS-03-54729 and DMS-06-00791. TP is grateful to the Georgia Institute of Technology, Imperial College and the University of Oxford for their hospitality during various stages of this project, with support provided by a NSF VIGRE fellowship (2003-2006), an EPSRC fellowship (2006-2007) and a Marie Curie EIF fellowship (2007-2009).

References

1. M. Agueh, N. Ghoussoub, and X. Kang, Geometric inequalities via a general comparison principle for interacting gases, Geom. Funct. Anal. 14 (2004), no. 1, 215-244. MR MR2053603 (2005c:82050)
2. Martial Agueh, Asymptotic behavior for doubly degenerate parabolic equations, C. R. Math. Acad. Sci. Paris 337 (2003), no. 5, 331-336. MR MR2016985 (2004i:35194)
3. Luigi Ambrosio and Wilfred Gangbo, Hamiltonian ODEs in the Wasserstein space of probability measures, Comm. Pure Appl. Math. 61 (2008), no. 1, 18-53. MR MR2361303
4. Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. MR MR2129498 (2006k:49001)
5. P. L. Antonelli, D. Burghelea, and P. J. Kahn, The non-finite homotopy type of some diffeomorphism groups, Topology 11 (1972), 1-49. MR MR0292106 (45 \#1193)
6. V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319-361. MR MR0202082 (34 \#1956)
7. Iwo Białynicki-Birula, John C. Hubbard, and Łukasz A. Turski, Gaugeindependent canonical formulation of relativistic plasma theory, Phys. A 128 (1984), no. 3, 509-519. MR MR774764 (86b:76055)
8. M. Born, On the quantum theory of the electromagnetic field, Proceedings of the Royal Society of London. Series A 143 (1934), no. 849, 410-437.
9. M. Born and L. Infeld, On the quantization of the new field theory. ii, Proceedings of the Royal Society of London. Series A 150 (1935), no. 869, 141-166.
10. Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR MR1224675 (94d:55001)
11. E. A. Carlen and W. Gangbo, Constrained steepest descent in the 2-Wasserstein metric, Ann. of Math. (2) $\mathbf{1 5 7}$ (2003), no. 3, 807-846. MR MR1983782 (2004c:49027)
12. José A. Carrillo, Robert J. McCann, and Cédric Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal. 179 (2006), no. 2, 217-263. MR MR2209130 (2006j:76121)
13. Hernán Cendra, Darryl D. Holm, Mark J. W. Hoyle, and Jerrold E. Marsden, The Maxwell-Vlasov equations in Euler-Poincaré form, J. Math. Phys. 39 (1998), no. 6, 3138-3157. MR MR1623546 (99e:76131)
14. Paul R. Chernoff and Jerrold E. Marsden, Properties of infinite dimensional Hamiltonian systems, Lecture Notes in Mathematics, Vol. 425, Springer-Verlag, Berlin, 1974. MR MR0650113 (58 \#31218)
15. D. Cordero-Erausquin, B. Nazaret, and C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math. 182 (2004), no. 2, 307-332. MR MR2032031 (2005b:26023)
16. Dario Cordero-Erausquin, Wilfrid Gangbo, and Christian Houdré, Inequalities for generalized entropy and optimal transportation, Recent advances in the theory and applications of mass transport, Contemp. Math., vol. 353, Amer. Math. Soc., Providence, RI, 2004, pp. 73-94. MR MR2079071 (2005f:49094)
17. David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid., Ann. of Math. (2) 92 (1970), 102-163. MR MR0271984 (42 \#6865)
18. Wilfrid Gangbo and Robert J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), no. 2, 113-161. MR MR1440931 (98e:49102)
19. Wilfrid Gangbo and Adrian Tudorascu, in preparation.
20. Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall Inc., Englewood Cliffs, N.J., 1974. MR MR0348781 (50 \#1276)
21. Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65-222. MR MR656198 (83j:58014)
22. Richard Jordan, David Kinderlehrer, and Felix Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1-17 (electronic). MR MR1617171 (2000b:35258)
23. Boris Khesin and Paul Lee, Poisson geometry and first integrals of geostrophic equations, Physica D (to appear).
24. Hwa Kil Kim, Ph.D. thesis, Georgia Institute of Technology, in preparation.
25. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley \& Sons, New York-Lond on, 1963. MR MR0152974 (27 \#2945)
26. John Lott, Some geometric calculations on Wasserstein space, Comm. Math. Phys. 277 (2008), no. 2, 423-437. MR MR2358290
27. John Lott and Cédric Villani, Ricci curvature for metric-measure space via optimal transport, Ann. of Math. (to appear).
28. Francesco Maggi and Cédric Villani, Balls have the worst best Sobolev inequalities, J. Geom. Anal. 15 (2005), no. 1, 83-121. MR MR2132267 (2006a:26041)
29. J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid, and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. I (Torino, 1982), vol. 117, 1983, pp. 289-340. MR MR773493 (86f:58062)
30. Jerrold E. Marsden and Tudor S. Ratiu, Introduction to mechanics and symmetry, second ed., Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1999, A basic exposition of classical mechanical systems. MR MR1723696 (2000i:70002)
31. Jerrold E. Marsden and Alan Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D 4 (1981/82), no. 3, 394-406. MR MR657741 (84b:82037)
32. Robert J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153-179. MR MR1451422 (98e:82003)
33. Robert J. McCann and Peter Topping, Ricci flow, entropy and optimal transportation.
34. Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998. MR MR1698616 (2000g:53098)
35. J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 10071057. MR MR830252 (87g:22024)
36. K. Ono, Floer-Novikov cohomology and the flux conjecture, Geom. Funct. Anal. 16 (2006), no. 5, 981-1020. MR MR2276532 (2007k:53147)
37. Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101-174. MR MR1842429 (2002j:35180)
38. Wolfgang Pauli, General principles of quantum mechanics, Springer-Verlag, Berlin, 1980, Translated from the German by P. Achuthan and K. Venkatesan, With an introduction by Charles P. Enz. MR MR636099 (83b:81003)
39. Walter Rudin, Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. MR MR1157815 (92k:46001)
40. Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65-131. MR MR2237206 (2007k:53051a)
41. , On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133-177. MR MR2237207 (2007k:53051b)
42. Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR MR1964483 (2004e:90003)
43. Alan Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329-346 (1971). MR MR0286137 (44 \#3351)

Georgia Institute of Technology, Atlanta GA, USA
E-mail address: gangbo@math.gatech.edu
Georgia Institute of Tecnology, Atlanta GA, USA
E-mail address: hwakil@math.gatech.edu
Mathematical Institute, Oxford, UK
E-mail address: pacini@maths.ox.ac.uk

[^0]: Date: July 21, 2008.
 1991 Mathematics Subject Classification. Primary 35Qxx, 49-xx; Secondary 53Dxx, 70-xx.

