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Abstract. Let M denote the space of probability measures on
RD endowed with the Wasserstein metric. A differential calcu-
lus for a certain class of absolutely continuous curves in M was
introduced in [4]. In this paper we develop a calculus for the corre-
sponding class of differential forms on M. In particular we prove
an analogue of Green’s theorem for 1-forms and show that the
corresponding first cohomology group, in the sense of de Rham,
vanishes. For D = 2d we then define a symplectic distribution
on M in terms of this calculus, thus obtaining a rigorous frame-
work for the notion of Hamiltonian systems as introduced in [3].
Throughout the paper we emphasize the geometric viewpoint and
the role played by certain diffeomorphism groups of RD.

1. Introduction

Historically speaking, the main goal of Symplectic Geometry has
been to provide the mathematical formalism and the tools to define
and study the most fundamental class of equations within classical
Mechanics, Hamiltonian ODEs. Lie groups and group actions provide a
key ingredient, in particular to describe the symmetries of the equations
and to find the corresponding preserved quantities.

As the range of physical examples of interest expanded to encompass
continuous media, fields, etc., there arose the question of reaching an
analogous theory for PDEs. It has long been understood that many
PDEs should admit a reformulation as infinite-dimensional Hamil-
tonian systems. A deep early example of this is the work of Born-
Infeld [8], [9] and Pauli [38], who started from a Hamiltonian formu-
lation of Maxwell’s equations to develop a quantum field theory in
which the commutator of operators is analogous to the Poisson brack-
ets used in the classical theory. Further examples include the wave
and Klein-Gordon equations (cfr. e.g. [14], [30]), the relativistic and
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non-relativistic Maxwell-Vlasov equations [7], [31], [13], and the Euler
incompressible equations [6].

In each case it is necessary to define an appropriate phase space,
build a symplectic or Poisson structure on it, find an appropriate energy
functional, then show that the PDE coincides with the corresponding
Hamiltonian flow. For various reasons, however, the results are often
more formal than rigorous. In particular, existence and uniqueness the-
orems for PDEs require a good notion of weak solutions which need to
be incorporated into the configuration and phase spaces; the geometric
structure of these spaces needs to be carefully worked out; the func-
tionals need the appropriate degree of regularity, etc. The necessary
techniques, cfr. e.g. [14], [17], can become quite complicated and ad
hoc.

The purpose of this paper is to provide the basis for a new frame-
work for defining and studying Hamiltonian PDEs. The configuration
space we rely on is the Wasserstein space M of non-negative Borel
measures on RD with total mass 1 and finite second moment. Over the
past decade it has become clear that M provides a very useful space of
weak solutions for those PDEs in which total mass is preserved. One of
its main virtues is that it provides a unified theory for studying these
equations. In particular, the foundation of the theory of Wasserstein
spaces comes from Optimal Transport and Calculus of Variations, and
these provide a toolbox which can be expected to be uniformly useful
throughout the theory. Working in M also allows for extremely singu-
lar initial data, providing a bridge between PDEs and ODEs when the
initial data is a Dirac measure.

The main geometric structure on M is that of a metric space. The
geometric and analytic features of this structure have been intensively
studied, cfr. e.g. [4], [11], [12], [32], [37]. In particular the work [4] has
developed a theory of gradient flows on metric spaces. In this work
the technical basis for the notion of weak solutions to a flow on M is
provided by the theory of 2-absolutely continuous curves. In particular,
[4] develops a differential calculus for this class of curves including a
notion of “tangent space” for each µ ∈ M. Applied to M, this allows
for a rigorous reformulation of many standard PDEs as gradient flows
on M. Overall, this viewpoint has led to important new insights and
results, cfr. e.g. [2], [4], [12], [22], [37]. Topics such as geodesics,
curvature and connections on M have also received much attention,
cfr. [40], [41], [26], [27].

In the case D = 2d, recent work [3] indicates that other classes of
PDEs can be viewed as Hamiltonian flows on M. Developing this idea
requires however a rigorous symplectic formalism for M, adapted to
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the viewpoint of [4]. Our paper achieves two main goals. The first is
to develop a general theory of differential forms on M. We present
this in Sections 4 and 5. This calculus should be thought of as dual
to the calculus of absolutely continuous curves. Our main result here,
Theorem 5.33, is an analogue of Green’s theorem for 1-forms and leads
to a proof that every closed 1-form on M is, in a specific sense, exact.
The second goal is to show that there exists a natural symplectic and
Hamiltonian formalism for M which is compatible with this calculus
of curves and forms. The appropriate notions are defined and studied
in Sections 6 and 7.

Given any mathematical construction, it is a fair question if it can be
considered “the most natural” of its kind. It is well known for example
that cotangent bundles admit a “canonical” symplectic structure. It is
an important fact, discussed in Section 7, that on a non-technical level
our symplectic formalism turns out to be formally equivalent to the
Poisson structure considered in [31], cfr. also [23] and [26]. From the
geometric point of view it is clear that the structure in [31] is indeed an
extremely natural choice. The choice of M as a configuration space is
also both natural and classical. The difference between our paper and
the previous literature appears precisely on the technical level, starting
with the choice of geometric structure on M. Specifically, whereas pre-
vious work tends to rely on various adaptations of differential geometric
techniques, we choose the methods of Optimal Transport. The techni-
cal effort involved is justified by the final result: while previous studies
are generally forced to restrict to smooth measures and functionals,
our methods allow us to present a uniform theory which includes all
singular measures and assumes very little regularity on the function-
als. Sections 5.2 through 5.6 are an example of the technicalities this
entails. Section 5.1 provides instead an example of the simplifications
which occur when one assumes a higher degree of regularity.

By analogy with the case of gradient flows we expect that our frame-
work and results will provide new impulse and direction to the develop-
ment of the theory of Hamiltonian PDEs. In particular, previous work
and other work in progress inspired by these results lead to existence
results for singular initial data [3], existence results for Hamiltonians
satisfying weak regularity conditions [24], and to the development of
a weak KAM theory for the nonlinear Vlasov equation [19]. It is to
be expected that in the process of these developments our regularity
assumptions will be even further relaxed so as to broaden the range
of applications. We likewise expect that the geometric ideas underly-
ing Symplectic Geometry and Geometric Mechanics will continue to
play an important role in the development of the Wasserstein theory
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of Hamiltonian systems on M. For example, in a very rough sense
the relationship between our methods and those implicit in [31] can
be thought of as analogous to the relationship between [17] and [6].
A connection between the choice of using Lie groups (as in [17] and
[6]) or the space of measures as configuration spaces is provided by the
process of symplectic reduction, cfr. [29], [30]. Throughout this article
we thus stress the geometric viewpoint, with particular attention to
the role played by certain group actions.

In recent years Wasserstein spaces have also been very useful in the
field of Geometric Inequalities, cfr. e.g. [1], [15], [16], [28]. Most
recently, the theory of Wasserstein spaces has started producing results
in Metric and Riemannian Geometry, cfr. e.g. [33], [27], [40], [41].
Thus there exist at least three distinct communities which may be
interested in these spaces: people working in Analysis/PDEs/Calculus
of Variations, people in Geometrical Mechanics, people in Geometry.
Concerning the exposition of our results, we have tried to take this into
account in various ways: (i) by incorporating into the presentation an
abundance of background material; (ii) by emphasizing the general
geometric setting behind many of our constructions; (iii) by avoiding
maximum generality in the results themselves, in particular by often
restricting to the simplest case of interest, Euclidean spaces. As much
as possible we have also tried to keep the background material and the
purely formal arguments separate from the main body of the article via
a careful subdivision into sections and an appendix. We now briefly
summarize the contents of each section.

Section 2 contains a brief introduction to the topological and differ-
entiable structure (in the weak sense of [4]) of M. Likewise, Appendix
A reviews various notions from Differential Geometry including Lie
derivatives, differential forms, Lie groups and group actions. The ma-
terial in both is completely standard, but may still be useful to some
readers. Section 3 provides a bridge between these two parts by revis-
iting the differentiable structure of M in terms of group actions. Al-
though this point of view is maybe implicit in [4], it seems worthwhile
to emphasize it. On a purely formal level, it leads to the conclusion that
M should roughly be thought of as a stratified rather than a smooth
manifold, see Section 3.2. It also relates the sets RD ⊂ M ⊂ (C∞

c )∗.
The first inclusion, based on Dirac measures, shows that the theory on
M specializes by restriction to the standard theory on RD: this should
be thought of as a fundamental test in this field, to be satisfied by
any new theory on M. The second inclusion provides background for
relating the constructions of Section 6.2 to the work [31]. Overall, Sec-
tion 3 is perhaps more intuitive than rigorous; however it does seem to
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provide a useful point of view on M and it provides an intuitive basis
for the developments in the following sections. Section 4 defines the
basic objects of study for a calculus on M, namely differential forms,
push-forward operations and an exterior differential operator. It also
introduces “pseudo-forms” as a weaker version of the same objects, and
specifies the relationship between them in terms of a projection oper-
ator. Pseudo-forms reappear in Section 5 as the main object of study,
mainly because they generally enjoy better regularity properties than
the corresponding forms: the latter depend on the projection operator,
whose degree of smoothness is not yet well-understood. The main result
of this section is an analogue of Green’s theorem for certain annuli in
M, Theorem 5.33. Stating and proving this result requires a good un-
derstanding of the measurability and integrability properties of pseudo
1-forms. We achieve this in several stages. The first step is to introduce
a notion of regularity for pseudo 1-forms, cfr. Definition 5.4. We then
study the continuity and differentiability properties of regular forms.
We also study the approximation of 2-absolutely continuous curves by
smoother curves. Combining these results leads to the required un-
derstanding, in Section 5.5, of the behaviour of pseudo 1-forms under
integration. Our main application of Theorem 5.33 is Corollary 5.35,
which shows that the 1-form defined by any closed pseudo 1-form onM
is exact. This shows that the corresponding first cohomology group, in
the sense of de Rham, vanishes. In Section 6 we move on towards Sym-
plectic Geometry, specializing to the case D = 2d. The main material
is in Section 6.2: for each µ ∈M we introduce a particular subspace of
the tangent space TµM and show that it carries a natural symplectic
structure. We also study the geometric properties of this symplectic
distribution and define the notion of Hamiltonian systems on M, thus
providing a firm basis to the notion already introduced in [3]. Formally
speaking, this distribution of subspaces is integrable and the above de-
fines a Poisson structure on M. The existence of a Poisson structure
on (C∞

c )∗ had already been noticed in [31]: their construction is a for-
mal infinite-dimensional analogue of Lie’s construction of a canonical
Poisson structure on the dual of any finite-dimensional Lie algebra. We
review this construction in Section 7 and show that the corresponding
2-form restricts to ours onM. In this sense our construction is formally
equivalent to the Kirillov-Kostant-Souriau construction of a symplectic
structure on the coadjoint orbits of the dual Lie algebra.
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2. Topology on M and a differential calculus of curves

Let M denote the space of Borel probability measures on RD with
bounded second moment, i.e.

M := {Borel measures on RD : µ ≥ 0,

∫
RD

dµ = 1,

∫
RD

|x|2 dµ <∞}.

The goal of this section is to show that M has a natural metric struc-
ture and to introduce a differential calculus due to [4] for a certain class
of curves in M. We refer to [4] and [42] for further details.

2.1. The space of distributions. Let C∞
c denote the space of compactly-

supported smooth functions on RD. Recall that it admits the structure
of a complete locally convex Hausdorff topological vector space, cfr. e.g.
[39] Section 6.2. Let (C∞

c )∗ denote the topological dual of C∞
c , i.e. the

vector space of continuous linear maps C∞
c → R. We endow (C∞

c )∗

with the weak-* topology, defined as the coarsest topology such that,
for each f ∈ C∞

c , the induced evaluation maps

(C∞
c )∗ → R, φ 7→ 〈φ, f〉

are continuous. In terms of sequences this implies that, ∀f ∈ C∞
c ,

φn → φ⇔ 〈φn, f〉 → 〈φ, f〉. Then (C∞
c )∗ is a locally convex Hausdorff

topological vector space, cfr. [39] Section 6.16. As such it has a natural
differentiable structure.

The following fact may provide a useful context for the material of
Section 2.2. We denote by P the set of all Borel probability mea-
sures on RD. A function f on RD is said to be of p-growth (for some
p > 0) if there exist constants A,B ≥ 0 such that |f(x)| ≤ A + B|x|p.
Let Cb(RD) denote the set of continuous functions with 0-growth, i.e.
the space of bounded continuous functions. As above we can endow
(Cb(RD))∗ with its natural weak-* topology, defined using test func-
tions in Cb(RD): this is also known as the narrow topology. Clearly
C∞

c ⊂ Cb(RD) so there is a chain of inclusions P ⊂ (Cb(RD))∗ ⊂ (C∞
c )∗.

The set P thus inherits two natural topologies. It is well known, cfr.
[4] Remarks 5.1.1 and 5.1.6, that the corresponding two notions of con-
vergence of sequences coincide, but that the stronger topology induced
from (Cb(RD))∗ is more interesting in that it is metrizable.

2.2. The topology on M. Let C2(RD) denote the set of continuous
functions with 2-growth, as in Section 2.1. We can endow (C2(RD))∗

with its natural weak-* topology, defined using test functions in C2(RD).
As in Section 2.1 there is a chain of inclusions M ⊂ (C2(RD))∗ ⊂
(C∞

c )∗. We endow M with the topology induced from C2(RD))∗. No-
tice that M is a convex affine subset of C2(RD))∗. In particular it is
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contractible, so for k ≥ 1 all its homology groups Hk and cohomology
groups Hk vanish. As in Section 2.1, it turns out that this topology is
metrizable. A compatible metric can be defined as follows.

Definition 2.1. Let µ, ν ∈M. Consider

(2.1) W2(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
RD×RD

|x− y|2dγ(x, y)
)1/2

.

Here, Γ(µ, ν) denotes the set of Borel measures γ on RD × RD which
have µ and ν as marginals, i.e. satisfying π1#(γ) = µ and π2#(γ) = ν
where π1 and π2 denote the standard projections RD × RD → RD.

Equation 2.1 defines a distance on M. It is known that the infimum
in the right hand side of Equation 2.1 is always achieved. We will
denote by Γo(µ, ν) the set of γ which minimize this expression.

It can be shown that (M,W2) is a separable complete metric space,
cfr. e.g. [4] Proposition 7.1.5. It is an important result from Monge-
Kantorovich theory that
(2.2)

W 2
2 (µ, ν) = sup

u,v∈C(RD)

{∫
RD

udµ+

∫
RD

vdν : u(x)+v(y) ≤ |x−y|2 ∀x, y ∈ RD
}
.

Recall that µ is absolutely continuous with respect to Lebesgue measure
LD, written µ << LD, if it is of the form µ = ρ(x)LD for some function
ρ ∈ L1(RD). In this case for any ν ∈ M there exists a unique map
T : RD → RD such that T#µ = ν and

(2.3) W 2
2 (µ, ν) =

∫
RD

|x− T (x)|2dµ(x),

cfr. e.g. [4] or [18]. One refers to T as the optimal map that pushes µ
forward to ν.

Example 2.2. Given x ∈ RD, let δx denote the corresponding Dirac
measure on RD. Consider the set of such measures: this is a closed
subset of M isometric to RD. More generally, let ai (i = 1, . . . , n) be a
fixed collection of distinct positive numbers such that

∑
ai = 1. Then

the set of measures of the form
∑
aiδxi

constitutes a closed subset of
M, homeomorphic to RnD.

If ai ≡ 1/n then the set of measures of the form µ =
∑

1/n δxi
can be

identified with RnD quotiented by the set of permutations of n letters.
This space is not a manifold in the usual sense; in the simplest case
D = 1 and n = 2, it is homeomorphic to a closed half plane, which is
a manifold with boundary.
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Example 2.3. The subset of absolutely continuous measures in M is
neither open nor closed in M. Indeed, it does not intersect the sets of
Dirac measures seen in Example 2.2. The union of these sets constitutes
a dense subset of M. Furthermore if we define T r : RD → RD by
T r(x) = rx and fix an absolutely continuous measure µ ∈M then T r

#µ
converges to the Dirac mass at the origin.

2.3. Tangent spaces and the divergence operator. Let Xc denote
the space of compactly-supported smooth vector fields on RD. Let
∇C∞

c ⊆ Xc denote the set of all ∇f , for f ∈ C∞
c . For µ ∈ M let

L2(µ) denote the set of Borel maps X : RD → RD such that ||X||2µ :=∫
RD |X|2dµ is finite. Recall that L2(µ) is a Hilbert space with the

Euclidean inner product

(2.4) Ĝµ(X, Y ) :=

∫
RD

〈X, Y 〉 dµ.

Remark 2.4. If µ = ρLD for some ρ : Rd → (0,∞) such that
∫
ρdx = 1

then the natural map Xc → L2(µ) is injective. But in general it is not:
for example if µ is the Dirac mass at x then two vector fields X, Y will
be identified as soon as X(x) = Y (x). However, the image of this map
is always dense in L2(µ).

In [4] Section 8.4, a “tangent space” is defined for each µ ∈ M as
follows.

Definition 2.5. Given µ ∈ M, let TµM denote the closure of ∇C∞
c

in L2(µ). We call it the tangent space of M at µ. The tangent bundle
TM is defined as the disjoint union of all TµM.

Definition 2.6. Given µ ∈M we define the divergence operator

divµ : Xc → (C∞
c )∗, 〈divµ(X), f〉 := −

∫
RD

df(X) dµ.

Notice that the divergence operator is linear and that 〈divµ(X), f〉 ≤
||∇f ||µ||X||µ. This proves that the operator divµ extends to L2(µ) by
continuity; we will continue to use the same notation for the extended
operator, so that Ker(divµ) is now a closed subspace of L2(µ).

It follows from [4] Lemma 8.4.2 that, given any µ ∈ M, there is an
orthogonal decomposition

(2.5) L2(µ) = ∇C∞
c

µ ⊕Ker(divµ).

We will denote by πµ : L2(µ) → ∇C∞
c

µ
the corresponding projection.

Notice that each tangent space has a natural Hilbert space structure
Gµ, obtained by restriction of Ĝµ to ∇C∞

c

µ
.
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Remark 2.7. Decomposition 2.5 shows that TµM can also be identi-
fied with the quotient space L2(µ)/Ker(divµ): the map πµ provides a
Hilbert space isomorphism between these two spaces.

Example 2.8. Suppose that x1, · · · , xn are points in RD and µ =∑n
i=1 1/n δxi

. Fix ξ ∈ L2(µ). Set 4r := minxi 6=xj
|xi − xj| and define

(2.6) ϕ(x) =

{
〈x, ξ(xi)〉 if x ∈ B2r(xi) i = 1, · · · , n

0 if x 6∈ ∪n
i=1B2r(xi).

Let η ∈ C∞
c be an even function such that

∫
RD ηdx = 1, η ≥ 0 and

η is supported in the closure of Br(0). Then ϕ̄ := η ∗ ϕ ∈ C∞
c and

∇ϕ̄ coincides with ξ on ∪n
i=1Br(xi). Consequently, L2(µ) = TµM and

Ker(divµ) = {0}. In particular if the points xi are distinct then L2(µ)
can be identified with RnD. If on the other hand all the points coincide,
i.e. xi ≡ x, then µ = δx and L2(µ) ' RD.

Consider for example the simplest case D = 1, n = 2. As seen in
Example 2.2 the corresponding space of Dirac measures is homeomor-
phic to a closed half plane. We now see that at any interior point,
corresponding to x1 6= x2, the tangent space is R2. At any boundary
point, corresponding to x1 = x2, the tangent space is R. One should
compare this with the usual differential-geometric definition of tangent
planes on a manifold with boundary, cfr. e.g. [20]: in that case, the
tangent plane at a boundary point would be R2. We will come back to
this in Section 3.2.

Remark 2.9. Decomposition 2.5 extends the standard orthogonal Hodge
decomposition of a smooth L2 vector field X on RD:

X = ∇u+X ′,

where u is defined as the unique smooth solution in W 1,2 of ∆u =
div(X) and X ′ := X −∇u.

In particular, Decomposition 2.5 shows that ∇C∞
c

µ ∩ Ker(divµ) =
{0}. The analogous statement with respect to the measure LD is that
the only harmonic function on RD in W 1,2 is the function u ≡ 0.

2.4. Analytic justification for the tangent spaces. Following [4]
we now provide an analytic justification for the above definition of
tangent spaces for M. A more geometric justification, using group
actions, will be given in Section 3.2.

Suppose we are given a curve σ : (a, b) →M and a Borel vector field
X : (a, b)×RD → RD such that Xt ∈ L2(σt). Here, we have written σt

in place of σ(t) and Xt in place of X(t). We will write

(2.7)
∂ σ

∂t
+ divσ(X) = 0
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if the following condition holds: for all φ ∈ C∞
c ((a, b)× RD),

(2.8)

∫ b

a

∫
RD

(∂ φ
∂ t

+∇φ(Xt)
)
dσt dt = 0,

i.e. if Equation 2.7 holds in the sense of distributions. Given σt, notice
that if Equation 2.7 holds for X then it holds for X+W , for any Borel
map W : (a, b)× RD → RD such that Wt ∈ Ker(divσt).

The following definition and remark can be found in [4] Chapter 1.

Definition 2.10. Let (S, dist) be a metric space. A curve t ∈ (a, b) 7→
σt ∈ S is 2–absolutely continuous if there exists β ∈ L2(a, b) such that

dist(σt, σs) ≤
∫ t

s
β(τ)dτ for all a < s < t < b. We then write σ ∈

AC2(a, b; S). For such curves the limit |σ′|(t) := lims→t dist(σt, σs)/|t−
s| exists for L1–almost every t ∈ (a, b). We call this limit the metric
derivative of σ at t. It satisfies |σ′| ≤ β L1–almost everywhere.

Remark 2.11. (i) If σ ∈ AC2(a, b; S) then |σ′| ∈ L2(a, b) and dist(σs, σt) ≤∫ t

s
|σ′|(τ)dτ for a < s < t < b. We can apply Hölder’s inequality to con-

clude that dist2(σs, σt) ≤ c|t− s| where c =
∫ b

a
|σ′|2(τ)dτ.

(ii) It follows from (i) that {σt| t ∈ [a, b]} is a compact set, so it is
bounded. For instance, given x ∈ S, the triangle inequality proves that
dist(σs, x) ≤

√
c|s− a|+ dist(σa, x).

We now recall [4] Theorem 8.3.1. It shows that the definition of
tangent space given above is flexible enough to include the velocities of
any “good” curve in M.

Proposition 2.12. If σ ∈ AC2(a, b;M) then there exists a Borel map
v : (a, b) × RD → RD such that ∂ σ

∂t
+ divσ(v) = 0 and vt ∈ L2(σt)

for L1–almost every t ∈ (a, b). We call v a velocity for σ. If w is
another velocity for σ then the projections πσt(vt), πσt(wt) coincide for
L1–almost every t ∈ (a, b). One can choose v such that vt ∈ ∇C∞

c

σt

and ||vt||σt = |σ′|(t) for L1–almost every t ∈ (a, b). In that case, for
L1–almost every t ∈ (a, b), vt is uniquely determined. We denote this
velocity σ̇ and refer to it as the velocity of minimal norm, since if wt is
any other velocity associated to σ then ||σ̇t||σt ≤ ||wt||σt for L1–almost
every t ∈ (a, b).

The following remark can be found in [4] Lemma 1.1.4 in a more
general context.

Remark 2.13 (Lipschitz reparametrization). Let σ ∈ AC2(a, b;M) and

v be a velocity associated to σ. Fix α > 0 and define S(t) =
∫ t

a

(
α +
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||vτ ||στ

)
dτ. Then S : [a, b] → [0, L] is absolutely continuous and in-

creasing, with L = S(b). The inverse of S is a function whose Lipschitz
constant is less than or equal to 1/α. Define

σ̄s := σS−1(s), v̄s := Ṡ−1(s)vS−1(s).

One can check that σ̄ ∈ AC2(0, L;M) and that v̄ is a velocity asso-
ciated to σ̄. Fix t ∈ (a, b) and set s := S(t). Then vt = Ṡ(t)v̄S(t) and

||v̄s||σs =
||vt||σt

α+||vt||σt
< 1.

3. The calculus of curves, revisited

The goal of this section is to revisit the material of Section 2 from
a more geometric viewpoint. Many of the results presented here are
purely formal, but they may provide some insight into the structure of
M. They also provide useful intuition into the more rigorous results
contained in the sections which follow. We refer to Appendix A for
notation and terminology.

3.1. Embedding the geometry of RD into M. We have already
seen in Example 2.2 that Dirac measures provide a continuous embed-
ding of RD into M. Many aspects of the standard geometry of RD can
be recovered inside M, and various techniques which we will be using
for M can be seen as an extension of standard techniques used for RD.

One example of this is provided by Example 2.8, which shows that
the standard notion of tangent space on RD coincides with the notion
of tangent spaces on M introduced by [4].

Another simple example is as follows. Consider the space of vol-
ume forms on RD, i.e. the smooth never-vanishing D-forms. Under
appropriate normalization and decay conditions, these define a subset
of M. Given a vector field X ∈ Xc and a volume form α, there is
a standard geometric definition of divα(X) in terms of Lie derivatives:
namely, LXα is also a D-form so we can define divα(X) to be the unique
smooth function on M such that

(3.1) divα(X)α = LXα.

In particular, it is clear from this definition and Lemma A.3 that X ∈
Ker(divα) iff the corresponding flow preserves the volume form.

Cartan’s formula together with Green’s theorem for RD shows that
divα is the negative formal adjoint of d with respect to α, i.e.∫

M

f divα(X)α = −
∫

M

df(X)α, ∀f ∈ C∞
c (M).
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In particular, divα(X)α satisfies Equation 2.6. In this sense Equation
2.6 extends the standard geometric definition of divergence to the whole
of M.

3.2. The intrinsic geometry of M. It is appealing to think that, in
some weak sense, the results of Section 2.4 can be viewed as a way of
using the Wasserstein distance to describe an “intrinsic” differentiable
structure on M. This structure can be alternatively viewed as follows.

Let φ : RD → RD be a Borel map and µ ∈M. Recall that the push-
forward measure φ#µ ∈M is defined by setting φ#µ(A) := µ(φ−1(A)),
for any open subset A ⊆ RD. Let Diffc(RD) denote the Id-component
of the Lie group of diffeomorphisms of RD with compact support, cfr.
Section A.3. One can check that the induced map

(3.2) Diffc(RD)×M→M, (φ, µ) 7→ φ#µ

is continuous. Choose any X ∈ Xc(RD) and let φt denote the flow of
X. Given any µ ∈ M, it is simple to verify that µt := φt#µ is a path
in M with velocity X in the sense of Proposition 2.12. Notice that in
this case the velocity is defined for all t, rather than only for almost
every t. In particular it makes sense to say that the velocity for t = 0
is πµ(X) ∈ TµM. The map

M→ TM, µ→ πµ(X) ∈ TµM
defines a fundamental vector field associated to X in the sense of Sec-
tion A.2. In this sense the map of Equation 3.2 defines a left action of
Diffc(RD) on M with properties analogous to those of the actions of
Section A.2.

According to Section A.2 the orbit and stabilizer of any fixed µ ∈M
are

Oµ := {ν ∈M : ν = φ#µ, for some φ ∈ Diffc(RD)},
Diffc,µ(RD) := {φ ∈ Diffc(RD) : φ#µ = µ}.

Formally, Diffc,µ(RD) is a Lie subgroup of Diffc(RD) and Ker(divµ) is
its Lie algebra. The map

j : Diffc(RD)/Diffc,µ(RD) → Oµ, [φ] 7→ φ#µ

defines a 1:1 relationship between the quotient space and the orbit of
µ. Lemma A.15 suggests that Oµ is a smooth submanifold of the space
M and that the isomorphism ∇j : Xc/Ker(divµ) → TµOµ coincides
with the map determined by the construction of fundamental vector
fields. Notice that, up to L2

µ-closure, the space Xc/Ker(divµ) is exactly
the space introduced in Definition 2.5. This indicates that the tangent
spaces of Section 2.3 should be thought of as “tangent” not to the
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whole of M, but only to the leaves of the foliation induced by the
action of Diffc(RD). In other words M should be thought of as a
stratified manifold, i.e. as a topological space with a foliation and a
differentiable structure defined only on each leaf of the foliation. This
point of view is purely formal but it corresponds exactly to the situation
already described for Dirac measures, cfr. Example 2.8.

Recall from Proposition 2.12 the relationship between the class of 2-
absolutely continuous curves and these tangent spaces. This result can
be viewed as the expression of a strong compatibility between two nat-
ural but a priori distinct structures on M: the Wasserstein topology
and the group action.

Remark 3.1. The claim that the Lie algebra of Diffc,µ(RD) is Ker(divµ)
can be supported in various ways. For example, assume φt is a curve
of diffeomorphisms in Diffc,µ(RD) and that Xt satisfies Equation A.8.
The following calculation is the weak analogue of Lemma A.3. It shows
that Xt ∈ Ker(divµ):∫

df(Xt) dµ =

∫
df(Xt) d(φt#µ) =

∫
df|φt(Xt|φt) dµ

=

∫
d/dt(f ◦ φt) dµ = d/dt

∫
f ◦ φt dµ

= d/dt

∫
f d(φt#µ) = d/dt

∫
f dµ = 0.

It is also simple to check that Ker(divµ) is a Lie subalgebra of Xc(RD),
i.e. if X, Y ∈ Ker(divµ) then [X, Y ] ∈ Ker(divµ). To show this, let
f ∈ C∞

c . Then:

〈divµ[X,Y ], f〉 = −
∫

RD

df([X, Y ]) dµ

= −
∫

Rd

dg(X) dµ+

∫
Rd

dh(Y ) dµ

= 〈divµ(X), g〉 − 〈divµ(Y ), h〉 = 0,

where g := df(Y ) and h := df(X).
Finally, assume µ is a smooth volume form on a compact manifold

M . In this situation Hamilton [21] proved that Diffµ(M) is a Fréchet
Lie subgroup of Diff(M) and that the Lie algebra of Diffµ(M) is the
space of vector fields X ∈ X (M) satisfying the condition LXµ = 0. As
seen in Section 3.1 this space coincides with Ker(divµ).

Remark 3.2. Recall that, given an appropriate curve µt in M, Propo-
sition 2.12 defines tangent vectors only L1-almost everywhere with re-
spect to t. For different reasons a similar issue should arise also for
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curves in a stratified manifold: tangent vectors should exist only while
moving within each leaf but not while crossing from one leaf to another.

3.3. Embedding the geometry of M into (C∞
c )∗. We can also

view M as a subspace of (C∞
c )∗. It is then interesting to compare the

corresponding geometries, as follows.
Consider the natural left action of Diffc(RD) on RD given by φ ·x :=

φ(x). As in Section A.2 this induces a left action on the spaces of forms
Λk, and in particular on the space of functions C∞

c = Λ0 as follows:

Diffc(RD)× C∞
c → C∞

c , φ · f := (φ−1)∗f = f ◦ φ−1.

By duality there is an induced left action on the space of distributions
given by

Diffc(RD)×(C∞
c )∗ → (C∞

c )∗, 〈(φ ·µ), f〉 := 〈µ, (φ−1 ·f)〉 = 〈µ, (f ◦φ)〉.

Notice that we have introduced inverses to ensure that these are left
actions, cfr. Remark A.9. It is clear that this extends the action already
defined in Section 3.2 on the subset M ⊂ (C∞

c )∗. In other words, the
natural immersion i : M → (C∞

c )∗ is equivariant with respect to the
action of Diffc(RD), i.e. i(φ#µ) = φ · i(µ).

As mentioned in Section 2.1, (C∞
c )∗ has a natural differentiable

structure. In particular it has well-defined tangent spaces Tµ(C∞
c )∗ =

(C∞
c )∗. For each µ ∈M, using the notation of Section 3.2, composition

gives an immersion

i ◦ j : Diffc(RD)/Diffc,µ(RD) → Oµ → (C∞
c )∗.

This induces an injection between the corresponding tangent spaces

∇(i ◦ j) : Xc/Ker(divµ) → Tµ(C∞
c )∗.

Notice that, using the equivariance of i,

〈∇(i ◦ j)(X), f〉 = 〈∇i(d/dt(φt#µ)|t=0), f〉 = 〈d/dt(i(φt#µ))|t=0, f〉
= 〈d/dt(φt · µ)|t=0, f〉 = d/dt 〈µ, f ◦ φt〉|t=0

= 〈µ, d/dt(f ◦ φt)|t=0〉 = 〈µ, df(X)〉
= −〈divµ(X), f〉.

In other words, the negative divergence operator can be interpreted as
the natural identification between TµM and the appropriate subspace
of (C∞

c )∗.
More generally, we can compare the calculus of curves in M with the

calculus of the corresponding curves in (C∞
c )∗. Given any sufficiently

regular curve of distributions t → µt ∈ (C∞
c )∗, we can define tangent
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vectors τt := limh→0
µt+h−µt

h
∈ Tµt(C

∞
c )∗. Assume that µt is strongly

continuous with respect to t, in the sense that the evaluation map

(a, b)× C∞
c → R, (µt, f) 7→ 〈µt, f〉

is continuous. Notice that µ = µt defines a distribution on the product
space (a, b)× RD: ∀f = ft(x) ∈ C∞

c ((a, b)× RD),

〈µ, f〉 :=

∫ b

a

〈µt, ft〉 dt.

One can check that d
dt
〈µt, ft〉 = 〈τt, ft〉+ 〈µt,

∂ft

∂t
〉, so

(3.3)

∫ b

a

〈µt,
∂ft

∂t
〉+ 〈τt, ft〉 dt = 0.

Equation 3.3 shows that if µt ∈M and τt = −divµt(Xt) then µt satisfies
Equation 2.8. In other words, the defining equation for the calculus
on M, Equation 2.7, is the natural weak analogue of the statement
limh→0

µt+h−µt

h
= −divµt(Xt).

Roughly speaking, the content of Proposition 2.12 is that if µt ∈M
is 2-absolutely continuous then, for almost every t, τt exists and can be
written as −divµt(Xt) for some t-dependent vector field Xt on RD.

Remark 3.3. One should think of Equation 2.7, i.e. d/dt(µt) = −divµt(Xt),
as an ODE on the submanifold M ⊂ (C∞

c )∗ rather than on the ab-
stract manifold M, in the sense that the right hand side is an element
of Tµt(C

∞
c )∗ rather than an element of TµtM. Using ∇(i ◦ j)−1 we

can rewrite this equation as an ODE on the abstract manifold M, i.e.
d/dt(µt) = πµt(X).

4. Tangent and cotangent bundles

We now define some further elements of calculus on M. As opposed
to Section 3, the definitions and statements made here are completely
rigorous. We will often refer back to the ideas of Section 3, however,
to explain the geometric intuition underlying this theory.

4.1. Push-forward operations on M and TM. The following re-
sult concerns the push-forward operation on M.

Lemma 4.1. If φ : RD → RD is a Lipschitz map with Lipschitz con-
stant Lip φ then φ# : M→M is also a Lipschitz map with the same
Lipschitz constant.

Proof: Let µ, ν ∈ M. Note that if u(x) + v(y) ≤ |x − y|2 for all
x, y ∈ RD then

u ◦ φ(a) + v ◦ φ(b) ≤ |φ(a)− φ(b)|2 ≤ (Lip φ)2|a− b|2.
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This, together with Equation 2.2 yields

(4.1)∫
RD

udφ#µ+

∫
RD

vdφ#ν =

∫
RD

u◦φdµ+

∫
RD

v◦φdν ≤ (Lip φ)2W 2
2 (µ, ν).

We maximize the expression at the left handside of Equation 4.1 over
the set of pairs (u, v) such that u(x)+ v(y) ≤ |x− y|2 for all x, y ∈ RD.
Then we use again Equation 2.2 to conclude the proof. QED.

The next results concern the lifted action of Diffc(RD) on TM in the
sense of Section A.2.

Lemma 4.2. For any µ ∈ M and φ ∈ Diffc(RD), the map φ∗ :
Xc(RD) → Xc(RD) has a unique continuous extension φ∗ : L2(µ) →
L2(φ#µ). Furthermore φ∗

(
Ker(divµ)

)
≤ Ker(divϕ#µ). Thus φ∗ induces

a continuous map φ∗ : TµM→ Tφ#µM.

Proof: Let µ ∈ M, φ ∈ Diffc(RD), f ∈ C∞
c (RD) and let X ∈

Ker(divµ). If Cφ is the L∞-norm of ∇φ we have ||φ∗X||φ#µ ≤ Cφ||X||µ.
Hence φ∗ admits a unique continuous linear extension. Furthermore

∫
RD

〈∇f, ϕ∗X〉dϕ#µ =

∫
RD

〈∇f ◦ ϕ, ϕ∗X ◦ ϕ〉dµ

=

∫
RD

〈∇f ◦ ϕ,∇ϕX〉dµ

=

∫
RD

〈(∇ϕ)T∇f ◦ ϕ,X〉dµ

=

∫
RD

〈∇[f ◦ ϕ], X〉dµ = 0.

QED.

Remark 4.3. Recall from Lemma A.20 that φ∗ = Adφ on Xc(RD).
Lemma 4.2 is then the analogue of Remark A.16.

Lemma 4.4. Let σ ∈ AC2(a, b;M) and let v be a velocity for σ. Let
ϕ ∈ Diffc(RD). Then t→ ϕ#(σt) ∈ AC2(a, b;M) and ϕ∗v is a velocity
for ϕ#σ.

Proof: If a < s < t < b, by Remark 4.1,

W2(ϕ#σt, ϕ#σs) ≤ (Lipϕ)W2(σt, σs).
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Because σ ∈ AC2(a, b;M) one concludes that dϕ#(σ) ∈ AC2(a, b;M).
If f ∈ C∞

c ((a, b)× RD) we have∫ b

a

∫
RD

(∂ft

∂t
+ dft(φ∗vt)

)
d(ϕ#σt)dt

=

∫ b

a

∫
RD

(∂ft

∂t
◦ ϕ+ (dft(φ∗vt)) ◦ ϕ

)
dσtdt

=

∫ b

a

∫
RD

(∂(f ◦ ϕ)t

∂t
+ d(f ◦ ϕ)t(vt)

)
dσtdt = 0.

To obtain the last equality we have used that (t, x) → f(t, ϕ(x)) is in
C∞

c ((a, b)× RD). QED.

4.2. Differential forms on M. Recall from Definition 2.5 that the
tangent bundle TM ofM is defined as the union of all spaces TµM, for
µ ∈M. We now define the pseudo tangent bundle TM to be the union
of all spaces L2(µ). Analogously, the union of the dual spaces T ∗µM
defines the cotangent bundle T ∗M; we define the pseudo cotangent
bundle T ∗M to be the union of the dual spaces L2(µ)∗.

It is clear from the definitions that we can think of TM as a sub-
bundle of TM. Decomposition 2.5 allows us also to define an injection
T ∗M→ T ∗M by extending any covector TµM→ R to be zero on the
complement of TµM in L2(µ). In this sense we can also think of T ∗M
as a subbundle of T ∗M. The projections πµ from Section 2.3 combine
to define a surjection π : TM → TM. Likewise, restriction yields a
surjection T ∗M→ T ∗M.

Remark 4.5. The above constructions make heavy use of the Hilbert
structure on L2(µ). Following the point of view of Remark 2.7 and Sec-
tion 3.2, i.e. emphasizing the differential, rather than the Riemannian,
structure of M one could decide to define TµM as L2(µ)/Ker(divµ).
Then the projections πµ : L2(µ) → TµM would still define by duality
an injection T ∗M → T ∗M: this would identify T ∗M with the an-
nihilator of Ker(divµ) in L2(µ). However there would be no natural
injection TM→ TM nor any natural surjection T ∗M→ T ∗M.

Definition 4.6. A 1-form on M is a section of the cotangent bundle
T ∗M, i.e. a collection of maps µ 7→ Fµ ∈ T ∗µM. A pseudo 1-form is a
section of the pseudo cotangent bundle T ∗M.

Analogously, a 2-form on M is a collection of alternating multilinear
maps

µ 7→ Λµ : TµM× TµM→ R,
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continuous for each µ in the sense that |Λµ(X1, X2)| ≤ cµ‖X1‖µ ·‖X2‖µ,
for some cµ ∈ R. A pseudo 2-form is a collection of continuous alter-
nating multilinear maps

µ 7→ Λ̄µ : L2(µ)× L2(µ) → R.

For k = 1, 2 we let ΛkM (respectively, Λ̄kM) denote the space of
k-forms (respectively, pseudo k-forms). We define a 0-form to be a
function M→ R.

For k = 1, 2, the continuity condition implies that any k-form is
uniquely defined by its values on any dense subset of TµM or TµM×
TµM, e.g. on the dense subset defined by smooth gradient vector fields.
The analogue is true for pseudo k-forms. Once again, using Decom-
position 2.5 yields an injection ΛkM → Λ̄kM and, by restriction, a
surjection Λ̄kM→ ΛkM. In this sense every pseudo k-form defines a
natural k-form.

Since TµM is a Hilbert space, by the Riesz representation theorem
every 1-form Λµ on TµM can be written Λµ(Y ) =

∫
RD〈Aµ, Y 〉dµ for a

unique Aµ ∈ TµM and all Y ∈ TµM. The analogous fact is true also
for pseudo 1-forms.

Remark 4.7. For k ≥ 3 it is not natural to consider alternating multi-
linear maps on L2(µ) which are continuous.

Remark 4.8. It is interesting to understand the geometric content of
a pseudo k-form. Formally speaking, restricted to any orbit Oµ =
Diffc(RD)/Diffc,µ(RD) of the Diffc(RD) action on M, a pseudo k-form
gives a map Oµ → Λk(Xc). Pulling this map back to Diffc(RD) de-
fines a Diffc,µ(RD)-invariant k-form on Diffc(RD), cfr. Section A.2.
This implies that a pseudo k-form on M is equivalent to a family of
Diffc,µ(RD)-invariant k-forms on Diffc(RD) parametrized by the space
of orbits M/Diffc(RD).

Example 4.9. Any f ∈ C∞
c defines a function on M, i.e. a 0-form,

as follows:

F (µ) :=

∫
RD

fdµ.

We will refer to these as the linear functions on M, in that the natural
extension to the space (C∞

c )∗ defines a function which is linear with
respect to µ.

Any Ā ∈ Xc defines a pseudo 1-form on M as follows:

Λ̄µ(X) :=

∫
RD

〈Ā,X〉dµ.
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We will refer to these as the linear pseudo 1-forms. Notice that if
Ā = ∇f for some f ∈ C∞

c then Λ̄ is actually a 1-form.
Any bounded field B = B(x) on RD of D × D matrices defines a

linear pseudo 2-form via

B̄(X, Y ) :=

∫
RD

B(X, Y )dµ.

As in Section A.2, the action of Diffc(RD) on M can be lifted to
forms and pseudo forms as follows.

Definition 4.10. For k = 1, 2, let Λ̄ be a pseudo k-form on M. Then
any φ ∈ Diffc(RD) defines a pull-back k-multilinear map φ∗Λ̄ on M as
follows:

(φ∗Λ̄)µ(X1, . . . , Xk) := Λ̄φ#µ(φ∗X1, . . . , φ∗Xk).

It is simple to check that φ∗Λ̄ is indeed continuous in the sense of
Definition 4.6 and is thus a pseudo k-form.

It follows from Lemma 4.2 that the push-forward operation preserves
Decomposition 2.5. This implies that the pull-back preserves the space
of k-forms, i.e. the pull-back of a k-form is a k-form.

Definition 4.11. Let F : M→ R be a function on M. We say that
ξ ∈ L2(µ) belongs to the subdifferential ∂•F (µ) if

F (ν) ≥ F (µ) + sup
γ∈Γo(µ,ν)

∫∫
RD×RD

〈ξ(x), y − x〉 dγ(x, y) + o(W2(µ, ν)),

as ν → µ. If −ξ ∈ ∂•(−F )(µ) we say that ξ belongs to the superdiffer-
ential ∂•F (µ).

If ξ ∈ ∂•F (µ) ∩ ∂•F (µ) then, for any γ ∈ Γo(µ, ν),

(4.2) F (ν) = F (µ) +

∫∫
RD×RD

〈ξ(x), y − x〉 dγ(x, y) + o(W2(µ, ν)).

If such ξ exists we say that F is differentiable at µ and we define the
gradient vector ∇µF := πµ(ξ). Using barycentric projections (cfr. [4]
Definition 5.4.2) one can show that, for γ ∈ Γo(µ, ν),∫∫

RD×RD

〈ξ(x), y − x〉 dγ(x, y) =

∫∫
RD×RD

〈πµ(ξ)(x), y − x〉 dγ(x, y).

Thus πµ(ξ) ∈ ∂•F (µ) ∩ ∂•F (µ) ∩ TµM and it satisfies the analogue of
Equation 4.2. It can be shown that the gradient vector is unique, i.e.
that ∂•F (µ) ∩ ∂•F (µ) ∩ TµM = {πµ(ξ)}.

Finally, if the gradient vector exists for every µ ∈ M we can define
the differential or exterior derivative of F to be the 1-form dF deter-
mined, for any µ ∈M and Y ∈ TµM, by dF (µ)(Y ) :=

∫
RD〈∇µF, Y 〉 dµ.
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To simplify the notation we will sometimes write Y (F ) rather then
dF (Y ).

Remark 4.12. Assume F : M → R is differentiable. Given X ∈
∇C∞

c (RD), let φt denote the flow of X. Fix µ ∈M.
(i) Set νt := (Id + tX)#µ. Then

F (νt) = F (µ) + t

∫
RD

〈∇µF,X〉dµ+ o(t).

(ii) Set µt := φt#µ. If ||∇µF (µ)||µ is bounded on compact subsets of
M then

F (µt) = F (µ) + t

∫
RD

〈∇µF,X〉dµ+ o(t).

Proof: The proof of (i) is a direct consequence of Equation 4.2 and of
the fact that, if r > 0 is small enough,

(
Id × (Id + tX)

)
#
µ ∈ Γo(µ, νt)

for t ∈ [−r, r].
To prove (ii), set

A(s, t) := (1− s)(Id + tX) + sφt.

Notice that ||φt−Id−tX||µ ≤ t2||(∇X)X||∞ and that (s, t) → m(s, t) :=
A(s, t)#µ defines a continuous map of the compact set [0, 1] × [−r, r]
into M. Hence the range of m is compact so ||∇µF (µ)||µ is bounded
there by a constant C. We use elementary arguments to conclude that
F is C-Lipschitz on the range of m. Let γ̄t :=

(
(Id + tX) × φt

)
#
µ.

We have γ̄t ∈ Γ(νt, µt) so W2(µt, νt) ≤ ||φt − Id − tX||µ = 0(t2). We
conclude that

|F (νt)− F (µt)| ≤ CW2(µt, νt) = 0(t2).

This, together with (i), yields (ii). QED.

Example 4.13. Fix f ∈ C∞
c and let F : M→ R be the corresponding

linear function, as in Example 4.9. Then F is differentiable with gra-
dient ∇µF ≡ ∇f . Thus dF is a linear 1-form on M. Viceversa, every
linear 1-form Λ is exact. In other words, if Λµ(X) =

∫
RD〈A,X〉dµ for

some A = ∇f then Λ = dF for F (µ) :=
∫

RD f dµ.

Definition 4.14. Let Λ̄ be a pseudo 1-form on M. We say that Λ̄ is
differentiable with exterior derivative dΛ̄ if (i) for all X ∈ ∇C∞

c , the
function Λ̄(X) is differentiable and (ii) for all X, Y ∈ ∇C∞

c , setting

(4.3) dΛ̄(X, Y ) := XΛ̄(Y )− Y Λ̄(X)− Λ̄([X, Y ])

yields a well-defined pseudo 2-form dΛ̄ on M (see Definition 4.11 for
notation).
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Remark 4.15. The logic of this definition is as follows. As in Section
3.2, X and Y define fundamental vector fields on M. In particular we
can think of the construction of fundamental vector fields as a canonical
way of extending the given tangent vectorsX, Y at any point µ ∈M to
global tangent vector fields on M. Equation 4.3 then mimics Equation
A.11 for k = 1. Notice that dΛ̄ will satisfy the continuity assumption
for pseudo 2-forms only if cancelling occurs to eliminate first-order
terms as in Equation A.11, cfr. Remark A.7.

Example 4.16. Assume Λ̄ is a linear pseudo 1-form, i.e. Λ̄(·) =∫
RD〈Ā, ·〉dµ for some Ā ∈ Xc. Then Λ̄ is differentiable and dΛ̄(X, Y ) =∫
RD〈(∇Ā−∇ĀT )X, Y 〉dµ. In particular dΛ̄ is a linear pseudo 2-form.

Furthermore if Λ̄ is a linear 1-form, i.e. Ā = ∇f for some f ∈ C∞
c ,

then dΛ̄ = 0.

5. Calculus of pseudo differential 1-forms

Given a 1–form α on a finite-dimensional manifold, Green’s formula
compares the integral of dα along a surface to the integral of α along the
boundary curves. In Section 5.1 we show that an analogous result for
M is rather simple when strong regularity assumptions are imposed
on the surface. However, from the point of view of applications it
is important to establish Green’s formula under weaker assumptions.
This is the main goal of this section. To achieve this we will mainly
work with pseudo 1-forms.

5.1. Green’s formula for smooth surfaces and 1-forms. Let S :
[0, 1]× [0, T ] →M denote a map such that, for each s ∈ [0, 1], S(s, ·) ∈
AC2(0, T ;M) and, for each t ∈ [0, T ], S(·, t) ∈ AC2((0, 1);M). Let
v(s, ·, ·) denote the velocity of minimal norm for S(s, ·) and w(·, t, ·)
denote the velocity of minimal norm for S(·, t). We assume that v, w ∈
C2([0, 1]× [0, T ]×RD,RD) and that their derivatives up to third order
are bounded. We further assume that v and w are gradient vector fields
so that ∂sv and ∂tw are also gradients.

Let Λ be a differentiable pseudo 1–form on M such that Λµ(u) = 0
whenever u ∈ L2(µ) and divµu = 0. Because of this, we may view Λ
as a 1–form on M. Assume that

(5.1) sup
µ∈K

||Λµ|| <∞

for all compact subsets K ⊂ M, where ||Λµ|| := supv{Λµ(v) : v ∈
TµM, ||v||µ ≤ 1}. We also assume that for all compact subsets K ⊂M
there exists a constant CK such that

(5.2) |Λν(u)− Λµ(u)| ≤ CKW2(µ, ν)(||u||∞ + ||∇u||∞)
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for µ, ν ∈ K and u ∈ Cb(RD,RD) such that ∇u is bounded.
Using Remark 2.11, Proposition 2.12 and the bound on v, w and on

their derivatives, we find that S is 1/2–Hölder continuous. Hence its
range is compact so ||ΛS(s,t)|| is bounded. We then use Equations 5.1,

5.2 and Taylor expansions for ws
t+h and vs+h

t to obtain that

(5.3) ∂t

(
ΛS(s,t)(w

s
t )

)
|s=s̄,t=t̄

= vs̄
t̄ (ΛS(s,t)(w

s̄
t̄ )) + ΛS(s̄,t̄)(∂tw

s
t ),

where we use the notation of Definition 4.11. Similarly,

(5.4) ∂s

(
ΛS(s,t)(v

s
t )

)
|s=s̄,t=t̄

= ws̄
t̄ (ΛS(s,t)(v

s̄
t̄ )) + ΛS(s̄,t̄)(∂sv

s
t ).

Now suppose that S(s, t) = ρ(s, t, ·)LD for some ρ ∈ C1([0, 1] ×
[0, T ] × RD) which is bounded with bounded derivatives. Then the
following lemma holds.

Lemma 5.1. For (s, t) ∈ (r, 1)×(0, T ) we have (∂tw
s
t−∂sv

s
t

)
−[ws

t , v
s
t ] ∈

Ker(divS(s,t)).

Proof: We have, in the sense of distributions,

(5.5) ∂tρ
s
t +∇ · (ρs

tv
s
t ) = 0, ∂sρ

s
t +∇ · (ρs

tw
s
t ) = 0

and so

∇ · ∂s(ρ
s
tv

s
t ) = −∂s∂tρ

s
t = ∇ · (∂tρ

s
tw

s
t ).

We use that ρ, v and w are smooth to conclude that

∇ ·
(
vs

t∂sρ
s
t + ρs

t∂sv
s
t

)
= ∇ ·

(
ws

t∂tρ
s
t + ρs

t∂tw
s
t

)
.

This implies that if ϕ ∈ C∞
c (RD) then

(5.6)

∫
RD

〈∇ϕ, vs
t∂sρ

s
t + ρs

t∂sv
s
t 〉 =

∫
RD

〈∇ϕ,ws
t∂tρ

s
t + ρs

t∂tw
s
t 〉.

We use again that ρ, v and w are smooth to obtain that Equation 5.5
holds pointwise. Hence, Equation 5.6 implies∫

RD

〈∇ϕ,−vs
t∇ · (ρs

tw
s
t ) + ρs

t∂sv
s
t 〉 =

∫
RD

〈∇ϕ,−ws
t∇ · (ρs

tv
s
t ) + ρs

t∂tw
s
t 〉.

Rearranging, this leads to∫
RD

〈∇ϕ, ∂sv
s
t−∂tw

s
t 〉ρs

tdLD =

∫
RD

〈
∇ϕ, vs

t

〉
∇·(ρs

tw
s
t )−

〈
∇ϕ,ws

t

〉
∇·(ρs

tv
s
t ).

Integrating by parts and substituting ρs
tLD with S(s, t) we obtain
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∫
RD

〈∇ϕ, ∂sv
s
t − ∂tw

s
t 〉dS(s, t)

=

∫
RD

(〈
∇2ϕws

t + (∇ws
t )

T∇ϕ, vs
t

〉
−

〈
∇2ϕvs

t + (∇vs
t )

T∇ϕ,ws
t

〉)
dS

=

∫
RD

〈
∇ϕ, [vs

t , w
s
t ]

〉
dS(s, t).

Since ϕ ∈ C∞
c (RD) is arbitrary, the proof is finished. QED.

We combine Equations 5.3 and 5.4 and use Lemma 5.1 to conclude
the following.

Proposition 5.2. For each t ∈ (0, T ) and s ∈ (a, b) we have

(5.7) ∂t

(
ΛS(s,t)(w

s
t )

)
− ∂s

(
ΛS(s,t)(v

s
t )

)
= dΛS(s,t)(v

s
t , w

s
t ).

Next, we define ||dΛµ|| to be the smallest nonnegative number λ such
that |dΛµ(X, Y )| ≤ λ||X||µ||Y ||µ for X, Y ∈ ∇C∞

c (RD).

Theorem 5.3 (Green’s formula for smooth surfaces). Let S be the
surface in M defined above and let its boundary ∂S be the union of the
negatively oriented curves S(r, ·), S(·, T ) and the positively oriented
curves S(1, ·), S(·, 0). Suppose that µ → ||dΛµ|| is also bounded on
compact subsets of M. Then∫

S

dΛ =

∫
∂S

Λ.

Proof: Recall that vs
t , w

s
t and their derivatives are bounded. This, to-

gether with Equations 5.1 and 5.2, implies that the functions (s, t) →
ΛS(s,t)(v

s
t ) and (s, t) → ΛS(s,t)(w

s
t ) are continuous. Hence, by Propo-

sition 5.2, (s, t) → dΛS(s,t)(v
s
t , w

s
t ) is Borel measurable as it is a limit

of quotients of continuous functions. The fact that µ → ||dΛµ|| is
bounded on compact subsets of M gives that (s, t) → dΛS(s,t)(v

s
t , w

s
t )

is bounded. The rest of the proof of this theorem is identical to that of
Theorem 5.33 when we use Proposition 5.2 in place of Corollary 5.31.
QED.

5.2. Regularity and differentiability of pseudo 1-forms.

Definition 5.4. Let µ → Λ̄µ =
∫

RD〈Āµ, ·〉dµ be a pseudo 1-form on
M. We will say that Λ̄ is regular if for each µ ∈ M there exists a
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Borel field of D × D matrices Bµ ∈ L∞(RD × RD, µ) and a function
Oµ ∈ C(R) with Oµ(0) = 0 such that

sup
γ

{∫
RD×RD

|Āν(y)− Āµ(x)−Bµ(x)(y − x)|2dγ(x, y), γ ∈ Γo(µ, ν)
}

≤ W 2
2 (µ, ν) min{Oµ(W2(µ, ν)), c(Λ̄)}2.

(5.8)

where Γo(µ, ν) is the set of γ minimizers in Equation 2.1 and c(Λ̄) > 0
is a constant independent of µ. We also assume that ||Bµ||µ is uniformly
bounded. Taking c(Λ̄) large enough, there is no loss of generality in
assuming that

(5.9) sup
µ∈M

||Bµ||µ ≤ c(Λ̄).

Remark 5.5. Assumption 5.8 could be substantially weakened for our
purposes. We only make such a strong assumption to avoid introducing
more notation and making longer computations.

Example 5.6. Every linear pseudo 1-form is regular. In other words,
given Ā ∈ Xc, if we define Λ̄µ(Y ) :=

∫
RD〈Ā, Y 〉dµ then Λ̄ is regular.

Indeed, setting Bµ := ∇Ā we use Taylor expansion and the fact that
the second derivatives of A are bounded to obtain Equation 5.8.

Remark 5.7. Let Λ̄ be as in Example 5.6. Then the restriction of Λ̄ to
TM gives a 1-form Λ defined by

Λµ(Y ) :=

∫
RD

〈πµ(Ā), Y 〉dµ ∀Y ∈ TµM.

It is not clear what smoothness properties the projections µ → πµ

might have with respect to µ ∈ M. This is one reason why in this
context it seems more practical to work with Ā rather than with its
projections.

From now till the end of Section 5 we assume Λ̄ is a regular pseudo
1-form on M and we use the notation Āµ, Bµ as in Definition 5.4.

Remark 5.8. If µ, ν ∈M, X ∈ L2(µ), Y ∈ L2(ν) and γ ∈ Γo(µ, ν) then

Λ̄ν(Y )− Λ̄µ(X)−
∫

RD×RD

(
〈Āµ(x), Y (y)−X(x)〉+ 〈Bµ(x)(y − x), Y (y)〉

)
dγ

=

∫
RD×RD

〈Āν(y)− Āµ(x)−Bµ(x)(y − x), Y (y)〉dγ(x, y).(5.10)
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By Equation 5.8 and Hölder’s inequality
(5.11)∣∣∣∫

RD×RD

〈Āν(y)− Āµ(x)−Bµ(x)(y − x), Y (y)〉
∣∣∣ ≤ W2(µ, ν)c(Λ̄) ||Y ||ν .

Similarly, Equation 5.9 and Hölder’s inequality yield

(5.12)
∣∣∣∫

RD×RD

〈Bµ(x)(y − x), Y (y)〉
∣∣∣ ≤ W2(µ, ν)c(Λ̄) ||Y ||ν .

We use Equations 5.11 and 5.12 to obtain∣∣∣Λ̄ν(Y )− Λ̄µ(X)−
∫

RD×RD

〈Āµ(x), Y (y)−X(x)〉dγ(x, y)
∣∣∣

≤ 2c(Λ̄)W2(µ, ν) ||Y ||ν .(5.13)

Remark 5.9. Let Y ∈ C1
c (RD) and define F (µ) := Λ̄µ(Y ). Then

|F (ν)− F (µ)| ≤W2(ν, µ)
(
||Āν ||ν ||∇Y ||∞ + 2c(Λ̄)||Y ||∞

)
Proof: By Hölder’s inequality∣∣∣∫

RD×RD

〈Āµ(x), Y (y)− Y (x)〉dγ(x, y)
∣∣∣ ≤ ||Āµ||µ||∇Y ||∞W2(ν, µ).

We apply Remark 5.8 with Y = X and we exchange the role of µ and
ν to conclude the proof. QED.

Lemma 5.10. The function

M→ R, µ 7→ ||Āµ||µ
is continuous on M and bounded on bounded subsets of M. Suppose
S : [r, 1]× [a, b] →M is continuous. Then

sup
(s,t)∈[r,1]×[a,b]

||ĀS(s,t)||S(s,t) <∞.

Proof: Fix µ0 ∈ M. For each µ ∈ M we choose γµ ∈ Γo(µ0, µ). We
have∣∣ ||Āµ||µ−||Āµ0||µ0

∣∣ =
∣∣ ||Āµ(y)||γµ−||Āµ0(x)||γµ

∣∣ ≤ ||Āµ(y)−Āµ0(x)||γµ .

This, together with Equations 5.8 and 5.9, yields∣∣∣||Āµ||µ−||Āµ0 ||µ0

∣∣∣ ≤ ||Bµ0(x)(y−x)||γµ+c(Λ̄)W2(µ0, µ) ≤ 2c(Λ̄)W2(µ0, µ).

To obtain the last inequality we have used Hölder’s inequality. This
proves the first claim.

Notice that (s, t) → ||ĀS(s,t)||S(s,t) is the composition of two continu-
ous functions and is defined on the compact set [r, 1]× [a, b]. Hence it
achieves its maximum. QED.
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Lemma 5.11. Let Y ∈ C2
c (RD) and define F (µ) := Λ̄µ(Y ). Then F is

differentiable with gradient ∇µF = πµ(∇Y T (x)Āµ(x) +BT
µ (x)Y (x)).

Furthermore, assume X ∈ ∇C2
c (RD) and let ϕt(x) = x + tX(x) +

tOt(x), where Ot is any continuous function on RD such that ||Ot||∞
tends to 0 as t tends to 0. Set µt := ϕ(t, ·)#µ. Then

F (µt) = F (µ)

+t

∫
RD

[
〈Āµ(x),∇Y (x)X(x)〉+ 〈Bµ(x)X(x), Y (x)〉

]
dµ+ o(t).(5.14)

Proof: Choose µ, ν ∈M and γ ∈ Γ0(µ, ν). As in Remark 5.8,

Λ̄ν(Y )− Λ̄µ(Y )

−
∫

RD×RD

(
〈Āµ(x), Y (y)− Y (x)〉+ 〈Bµ(x)(y − x), Y (y)〉

)
dγ

=

∫
RD×RD

〈Āν(y)− Āµ(x)−Bµ(x)(y − x), Y (y)〉dγ(x, y).

By Equation 5.8 and Hölder’s inequality,∣∣∣∫
RD×RD

〈Āν(y)− Āµ(x)−Bµ(x)(y − x), Y (y)〉
∣∣∣ ≤ o(W2(µ, ν)) ||Y ||ν .

Since Y ∈ C2
c (Rd) we can write Y (y) = Y (x) + ∇Y (x)(y − x) +

R(x, y)(y−x)2, for some continuous R = R(x, y) with compact support.
Then∫

RD×RD

〈Āµ(x), Y (y)− Y (x)〉dγ =

∫
RD×RD

〈Āµ(x),∇Y (x)(y − x)〉dγ

+

∫
RD×RD

〈Aµ(x), R · (y − x)2〉dγ.(5.15)

We now want to show that the term in Equation 5.15 is of the form
o(W2(µ, ν)) as ν tends to µ. For any ε > 0, choose a smooth compactly
supported vector field Z = Z(x) such that ‖Āµ−Z‖µ < ε. Then, using
Hölder’s inequality,

|
∫

RD×RD

〈Aµ(x), R · (y − x)2〉dγ(x, y)|

≤
∫

RD×RD

|〈(y − x)TRT (Aµ(x)− Z(x)), y − x〉|dγ(x, y)

+

∫
RD×RD

|〈Z(x), R · (y − x)2〉|dγ(x, y)

≤ ‖(y − x)TRT‖∞εW2(µ, ν) + ‖RTZ‖∞W 2
2 (µ, ν).
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Since ε and ‖Z‖∞ are independent of ν, this gives the required estimate.
Likewise, ∫

RD×RD

〈Bµ(x)(y − x), Y (y)〉dγ(x, y)

=

∫
RD×RD

〈Bµ(x)(y − x), Y (y)− Y (x)〉dγ(x, y)

+

∫
RD×RD

〈Bµ(x)(y − x), Y (x)〉dγ(x, y)

=

∫
RD×RD

〈Bµ(x)(y − x), Y (x)〉dγ(x, y) + o(W2(µ, ν)).

Combining these results shows that

Λ̄ν(Y ) = Λ̄µ(Y )

+

∫
RD×RD

〈∇Y T (x)Āµ(x) +BT
µ (x)Y (x), y − x〉dγ(x, y) + o(W2(µ, ν)).

As in Definition 4.11, this proves that F is differentiable and that
∇µF = πµ(∇Y T (x)Āµ(x) +BT

µ (x)Y (x)).
Now assume that φt is the flow of X. Notice that the curve t → µt

belongs to AC2(−r, r;M) for r > 0. We could choose for instance
r = 1. Hence the curve is continuous on [−1, 1]. By Lemma 5.10, the
composed function t → ||Āµt||µt is also continuous. Hence its range is
compact in R, so there exists C̄ > 0 such that ||Āµt||µt ≤ C̄ for all
t ∈ [−1, 1]. We may now use Remark 4.12 to conclude.

The general case of φt as in the statement of Lemma 5.11 can be
studied using analogous methods. QED.

Lemma 5.12. Any regular pseudo 1-form is differentiable in the sense
of Definition 4.14. Furthermore, ∀X,Y ∈ TµM,

(5.16) dΛ̄µ(X, Y ) =

∫
RD

〈(Bµ −BT
µ )X, Y 〉dµ.

Proof: We need to check the validity of Definition 4.14. ChooseX, Y ∈
C2

c (RD). By Lemma 5.11, Λ̄(X) and Λ̄(Y ) are differentiable functions
on M . Using the expression given in Lemma 5.11 for their gradients,
it is simple to check that

(5.17) XΛ̄(Y )− Y Λ̄(X)− Λ̄([X, Y ]) =

∫
RD

〈(Bµ −BT
µ )X, Y 〉dµ.

Since the right hand side of Equation 5.17 is continuous, multilinear and
alternating, dΛ̄(X,Y ) is a well-defined pseudo 2-form on M. QED.
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5.3. Further continuity and differentiability properties of reg-
ular forms. We collect here various other regularity properties of reg-
ular pseudo 1-forms.

Corollary 5.13. Choose σ ∈ AC2(a, b;M). For r > 0 and s ∈ [r, 1],
define

Ds : RD → RD, Ds(x) := sx.

Set σs
t = Ds#σt. Then there exists a constant Cσ(r) depending only on

σ and r such that ||Āσs
t
||σs

t
≤ Cσ(r) for all (s, t) ∈ [r, 1]× [a, b].

Proof: By Remark 2.11 (i), σ : [a, b] →M is 1/2–Hölder continuous:
there exists a constant c > 0 such that W 2

2 (σt2 , σt1) ≤ c|t2 − t1|. To-
gether with Proposition 4.1 and the fact that Lip(Ds) = s ≤ 1, this
gives that t→ σs

t is uniformly 1/2–Hölder continuous:

W 2
2 (σs

t2
, σs

t1
) ≤ W 2

2 (σt2 , σt1) ≤ c|t2 − t1|.
Remark 2.11 (ii) ensures that {σt| t ∈ [a, b]} is bounded and so there
exists c̄ > 0 such that W2(σt, δ0) ≤ c̄ for all t ∈ [a, b]. One can readily
check that γ :=

(
Ds1 ×Ds2

)
#
σt ∈ Γ(σs1

t , σ
s2
t ), so

W 2
2 (σs1

t , σ
s2
t ) ≤

∫
RD×RD

|x− y|2dγ =

∫
RD

|Ds1x−Ds2x|2dσt(x)

= |s2 − s1|2
∫

RD

|x|2dσt(x) ≤ c̄|s2 − s1|2.

Thus s → σs
t is 1–Lipschitz. Consequently (t, s) → σs

t is 1/2–Hölder
continuous. This, together with Lemma 5.10, yields the proof. QED.

Lemma 5.14. Assume {µε}ε∈E ⊂ M and vε ∈ L2(µε) are such that
C := supε∈E ||vε||L2(µε) is finite. Assume {µε}ε∈E converges to µ in M
as ε tends to 0 and that there exists v ∈ L2(µ) such that {vεµε}ε∈E

converges weak-∗ to vµ, as ε→ 0. If γε ∈ Γo(µ, µε) then limε→0 aε = 0,
where aε =

∫
RD×RD〈Āµ(x), vε(y)− v(x)〉dγε(x, y).

Proof: It is easy to obtain that ||v||L2(µ) ≤ C. Let γε ∈ Γo(µ, µε) and
ξ ∈ Xc. Then there exists a bounded function Cξ ∈ C(RD ×RD) and a
real number M such that

(5.18) ξ(x)−ξ(y) = ∇ξ(y)(x−y)+ |x−y|2Cξ(x, y), |Cξ(x, y)| ≤M,

for x, y ∈ RD. We use the first equality in Equation 5.18 to obtain that

〈Āµ(x), vε(y)− v(x)〉
= 〈Āµ(x)− ξ(x), vε(y)− v(x)〉+ 〈ξ(y), vε(y)〉
−〈ξ(x), v(x)〉+ 〈∇ξ(y)(x− y) + |x− y|2Cξ(x, y), vε(y)〉.
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Hence,

|aε| ≤ ||Āµ(x)− ξ(x)||L2(γε)||vε(y)− v(x)||L2(γε) + bε

+ |
∫

RD×RD

(
∇ξ(y)(x− y) + |x− y|2Cξ(x, y)

)
dγε(x, y)|.(5.19)

Above, we have set bε := |
∫

RD×RD

(
〈ξ(y), vε(y)〉−〈ξ(x), v(x)〉

)
dγε(x, y)|.

By the second inequality in Equation 5.18 and by Equation 5.19

(5.20) |aε| ≤ 2C||Āµ− ξ||L2(µ) + bε + ||∇ξ||∞W2(µ, µε) +MW 2
2 (µ, µε).

By assumption {W2(µ, µε)}ε∈E tends to 0 and {bε}ε∈E tends to 0 as ε
tends to 0. These facts, together with Equation 5.20, yield

lim sup
ε→0

|aε| ≤ 2C||Āµ − ξ||L2(µ)

for arbitrary ξ ∈ Xc. We use that Xc is dense in L2(µ) to conclude that
limε→ aε = 0. QED.

Corollary 5.15. Assume {µε}ε∈E ⊂ M, µ, vε ∈ L2(µε) and v satisfy
the assumptions of Lemma 5.14. Then limε→0 Λ̄µε(vε) = Λ̄µ(v).

Proof: Let γε ∈ Γo(µ, µε). Observe that

〈Āµε(y), vε(y)〉 − 〈Āµ(x), v(x)〉
= 〈Āµ(x), vε(y)− v(x)〉+ 〈Bµ(x)(y − x), vε(y)〉

+
〈
Āµε(y)− Āµ(x)−Bµ(x)(y − x), vε(y)

〉
.(5.21)

We now integrate Equation 5.21 over RD × RD and use Equations
5.8–5.9 and the fact that γε ∈ Γo(µ, µε). We obtain

|Λ̄µε(vε)− Λ̄µ(v)| ≤ |aε|+ ||Bµ||L∞(µ)W2(µ, µε)||vε||µε + o(W2(µ, µε))||vε||µε

≤ |aε|+ C||Bµ||L∞(µ)W2(µ, µε) + C o(W2(µ, µε)).(5.22)

Letting ε tend to 0 in Equation 5.22 we conclude the proof of the
corollary. QED.

Lemma 5.16 (continuity of Λ̄σt(Xt)). Suppose σ ∈ AC2(a, b;M). If
X ∈ C((a, b) × RD,RD) then t → Λ̄σt(Xt) =: λ(t) is continuous on
(a, b).

Proof: Fix t ∈ (a, b) so that t belongs to the interior of a compact
set K∗ ⊂ (a, b). Let ϕ ∈ Cc(RD,RD) and denote by K a compact set
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containing its support. Observe that X is uniformly continuous on
K∗ ×K so

lim sup
h→0

|
∫

RD

〈ϕ(x), Xt+h(x)−Xt(x)〉dσt+h(x)|

≤ lim sup
h→0

||ϕ||∞ sup
x∈K

|Xt+h(x)−Xt(x)| = 0.(5.23)

Since 〈Xt, ϕ〉 ∈ C∞
c and σ is continuous at t by Remark 2.11, we also

see that

(5.24) lim
h→0

∫
RD

〈ϕ(x), Xt(x)〉dσt+h(x) =

∫
RD

〈ϕ(x), Xt(x)〉dσt(x).

Since ϕ ∈ Cc(RD,RD) is arbitrary, Equations 5.23 and 5.24 give that
{Xt+hσt+h}h>0 converges weak-∗ to σtXt as h tends to zero. Corollary
5.15 yields that λ is continuous at t. QED.

Lemma 5.17 (Lipschitz property of Λ̄σt(Xt)). Suppose that σ ∈ AC2(a, b;M)
and v is a velocity for σ. Let X ∈ C1([a, b] × RD,RD) and C̃ > 0 be
such that

(5.25) sup
t∈[a,b]

||Āσt||σt , ||vt||σt , ||Xt||σt , ||∂tXt||∞, ||∇Xt||∞ ≤ C̃.

Then t→ Λ̄σt(Xt) =: λ(t) is L–Lipschitz for a constant L which is an
increasing function of C̃.

Proof: By Equation 5.25

|X(t+ h, y)−X(t, x)|

=
∣∣∣∫ 1

0

(
h∂tX +∇X · (y − x)

)
(t+ lh, x+ l(y − x))dl

∣∣∣
≤ C̃(|h|+ |y − x|).(5.26)

Let γh ∈ Γo(σt, σt+h). We exploit Equation 5.13 where we substitute
Y by Xt+h and use Equations 5.25 and 5.26 to obtain

|λ(t+ h)− λ(t)|

≤ |
∫

RD×RD

〈Āσt(x), Xt+h(y)−Xt(x)〉dγh(x, y)|

+2c(Λ̄)W2(σt, σt+h) ||Xt+h||σt+h

≤ C̃2(|h|+W2(σt, σt+h)) + 2c(Λ̄)W2(σt, σt+h) C̃

≤ 2|h|C̃2
(
1 + C̃ + 2c(Λ̄)

)
,



DIFFERENTIAL FORMS AND HAMILTONIAN SYSTEMS 31

where the last inequality is a consequence of Equation 5.25 and Remark
2.11, which yield W2(σt, σt+h) ≤ C̃|h|. Thus λ is L–Lipschitz with
L := C̃2

(
1 + C̃ + 2c(Λ̄)

)
. QED.

One can identify points where λ is differentiable by making additional
assumptions on X. We next show that the set of differentiability of λ
contains (a, b)\N . Here, N is the set of t ∈ (a, b) for which there exists
γh ∈ Γo(σt, σt+h) such that

(
π1 × (π2 − π1)/h

)
#
γh fails to converge to

(Id × v̄t)#σt in P2(RD × RD) as h tends to 0. The derivative of λ at
t will be written in terms of the projection v̄t of vt onto the tangent
space TσtM, i.e. v̄t := πσt(vt).

Lemma 5.18 (Differentiability property of Λ̄σt(Xt)). Suppose that σ, v
and X are as in Lemma 5.17. We further suppose that X ∈ C2([a, b]×
RD,RD) and

(5.27) ||∂2
ttXt||∞, ||∇∂tXt||∞, ||∇2Xt||∞ ≤ C̃.

If t ∈ (a, b) \ N then

λ′(t) =

∫
RD

〈
Āσt(x), ∂tXt(x) +∇Xt(x) · v̄t(x)

〉
dσt(x)

+

∫
RD

〈
Bσt(x) · v̄t(x), Xt(x)

〉
dσt(x).(5.28)

Proof: We shall show that Equation 5.33 holds by establishing a serie
of inequalities. First, by Equations 5.25 and 5.27
(5.29)
|X(t+h, y)−X(t, x)−h∂tX(t, x)−∇X(t, x)·(y−x)| ≤ C̃(|h|2+|y−x|2).

We exploit Equation 5.29 to obtain∣∣∣∫
RD×RD

(〈
Āσt(x), Xt+h(y)−Xt(x)

〉
− h

〈
Āσt(x), ∂tXt(x) +∇Xt(x) ·

y − x

h

〉)
dγh

∣∣∣
≤ C̃2

(
|h|2 +W 2

2 (σt, σt+h)
)
.

This, together with the fact that t ∈ (a, b) \ N yields

lim
h→0

∫
RD×RD

〈
Āσt(x),

Xt+h(y)−Xt(x)

h

〉
dγh(x, y)(5.30)

=

∫
RD

〈
Āσt(x), ∂tXt(x) +∇Xt(x) · v̄t(x)

〉
dσt(x).

By Equations 5.25 and 5.29

|X(t+ h, y)−X(t, x)| ≤ C̃(|h|+ |y − x|+ |h|2 + |y − x|2)
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so Hölder’s inequality yields∣∣∣∫
RD×RD

〈
Bσt(x) · (y − x), Xt+h(y)−Xt(x)

〉
dγh(x, y)

∣∣∣
≤ ||Bσt||σtC̃W2(σt, σt+h)

·
(
|h|+ |h|2 +W2(σt, σt+h) +W 2

2 (σt, σt+h)
)

≤ c(Λ̄)C̃2|h|
(
|h|+ |h|2 + C̃|h|+ C̃2|h|2

)
.(5.31)

To obtain Equation 5.31 we have used Equation 5.9 to bound ||Bσt||σt .
As before, we have also used Remark 2.11 to control W2(σt, σt+h) with
C̃|h|. By Equation 5.31 and the fact that t ∈ (a, b) \ N

lim
h→0

∫
RD×RD

〈
Bσt(x) ·

y − x

h
,Xt+h(y)

〉
dγh(x, y)

= lim
h→0

∫
RD×RD

〈
Bσt(x) ·

y − x

h
,Xt(x)

〉
dγh(x, y)

=

∫
RD

〈
Bσt(x) · v̄t(x), Xt(x)

〉
dσt(x).

If we substitute ν by σt+h, µ by σt, Y by Xt+h and X by Xt in Equation
5.11 and as before control W2(σt, σt+h) with C̃|h|, we obtain
(5.32)

lim
h→0

1

h

∫
RD×RD

〈Āσt+h
(y)−Āσt(x)−Bσt(x)(y−x), Āσt+h

(y)〉
)
dγh(x, y) = 0.

We make the same substitution in Equation 5.10 and use Equation 5.32
to obtain

(5.33)

λ′(t) = lim
h→0

∫
RD×RD

(
〈Āσt(x),

Xt+h(y)−Xt(x)

h
〉+〈Bσt(x)·

y − x

h
,Xt+h(y)〉

)
dγh.

Thanks to Equations 5.33, 5.30 and 5.32 we obtain Equation 5.28.
QED.

5.4. Mollification of absolutely continuous paths inM. Through-
out this section we suppose that ηε

D ∈ C∞(RD) is a mollifier : ηε
D(x) =

1/εDη(x/ε), for some bounded symmetric function η ∈ C∞(RD) whose
derivatives of all orders are bounded. We also impose that η > 0,∫

RD |x|2η(x)dx <∞ and
∫

RD η = 1. We fix µ ∈M and define f ε(x) :=∫
RD η

ε
D(x − y)dµ(y). Observe that f ε ∈ C∞(RD) is bounded, all its

derivatives are bounded and
∫

RD f
ε = 1.
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We suppose that ηε
1 ∈ C∞(R) is a standard mollifier: ηε

1(t) = 1/εη1(t/ε),
for some bounded symmetric function η1 ∈ C∞(R) which is positive on
(−1, 1) and vanishes outside (−1, 1). We also impose that

∫
R η1 = 1

and assume that |ε| < 1.
Suppose σ ∈ AC2(a, b;M) and v : (a, b) × RD → RD is a velocity

associated to σ so that t → ||vt||σt ∈ L∞(a, b). Suppose that for each
t ∈ (a, b) there exists ρt > 0 such that σt = ρtLD.

We can extend σ and v in time on an interval larger than [a, b].
For instance, set σ̃t = σa for t ∈ (a − 1, a) and set σ̃t = σb for t ∈
(b, b + 1). Observe that σ̃ ∈ AC2(a − 1, b + 1;M) and we have a
velocity ṽ associated to σ̃ such that ṽt = vt for t ∈ [a, b]. We can choose

ṽ such that ||ṽt||2σ̃t
= 0 for t outside (a, b). In particular,

∫ b−1

a−1
||ṽt||2σ̃t

dt =∫ b

a
||vt||2σt

dt. In the sequel we won’t distinguish between σ, σ̃ on the
one hand and v, ṽ on the other hand. This extension becomes useful
when we try to define ρε

t as it appears in Equation 5.34. The new
density functions are meaningful if we substitute σ by σ̃ and impose
that ε ∈ (0, 1).

For ε ∈ (0, 1), set

ρε
t(x) :=

∫
R
ηε

1(t− τ)ρτ (x)dτ, σε
t := ρε

tLD,(5.34)

ρε
t(x)v

ε
t(x) :=

∫
R
ηε

1(t− τ)ρτ (x)vτ (x)dτ.

Note that ρε
t(x) > 0 for all t ∈ (a, b) and x ∈ RD and ρε

t is a probability
density. Also, vε : (a, b)× RD → RD is a velocity associated to σε.

In the sequel we set

C2 :=

∫
RD

|x|2η(x)dx, C1 =

∫
R
η1(τ)τdτ, Cv := sup

τ∈(a−1,b+1)

||vτ ||στ .

Lemma 5.19. We assume that for each t ∈ (a, b) there exists ρt > 0
such that σt = ρtLD. Then σε ∈ AC2(a, b;M). For a < s < t < b,

(i) W2(µ, f
εLD) ≤ εC, (ii) ||vε

t ||σε
t
≤ Cv and (iii) W2(σ

ε
t , σt) ≤ εC1Cv.

Proof: We denote by U the set of pairs (u, v) such that u, v ∈ C(RD)
are bounded and u(x)+v(y) ≤ |x−y|2 for all x, y ∈ RD. Fix (u, v) ∈ U .
By Fubini’s theorem one gets the well-known identity

(5.35)

∫
RD

u(x)f ε(x)dx =

∫
RD

dµ(y)

∫
RD

u(x)ηε(x− y)dx.
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Since v(y) =
∫

RD v(y)ηε(x− y)dx, Equation 5.35 yields that∫
RD

u(x)f ε(x)dx+

∫
RD

v(y)dµ(y)

=

∫
RD

dµ(y)

∫
RD

ηε(x− y)
(
u(x) + v(y)

)
dx

≤
∫

RD

dµ(y)

∫
RD

ηε(x− y)|x− y|2dx(5.36)

=

∫
RD

dµ(y)

∫
RD

1

εD
η(
z

ε
)|z|2dz = C2ε2.

To obtain Equation 5.36 we have used that (u, v) ∈ U . We have proven
that

∫
RD u(x)f(x)dx +

∫
RD v(y)dµ(y) ≤ C2ε2 for arbitrary (u, v) ∈ U .

Thanks to the dual formulation of the Wasserstein distance Equation
2.2, we conclude the proof of (i).

Note that for each t ∈ (a, b) and x ∈ RD, ηε
1(t − τ)ρτ (x)/ρ

ε
t(x) is a

probability density on R. Hence, by Jensen’s inequality

|vε
t(x)|2 =

∣∣∣1/ρε
t(x)

∫
R
ηε

1(t− τ)ρτ (x)vτ (x)dτ
∣∣∣2

≤ 1/ρε
t(x)

∫
R
ηε

1(t− τ)ρτ (x)|vτ (x)|2dτ.

We multiply both sides of the previous inequality by ρε
t(x). We in-

tegrate the subsequent inequality over R and use Fubini’s theorem to
conclude the proof of (ii).

We use (ii) and Remark 2.11 (i) to obtain that σε ∈ AC2(a, b;M).
We have ∫

RD

u(x)dσε
t(x) =

∫
RD

u(x)dx

∫
R
ηε

1(τ)ρt−τ (x)dτ

=

∫
R
ηε

1(τ)dτ

∫
RD

u(x)dσt−τ (x).

Hence, using that v(y) =
∫

R η
ε
1(τ)v(y)dτ, we obtain

∫
RD

u(x)dσε
t(x) +

∫
RD

v(y)dσt(y) =

∫
R
ηε

1(τ)dτ
(∫

RD

udσt−τ +

∫
RD

vdστ

)(5.37)

≤
∫

R
ηε

1(τ)W
2
2 (σt−τ , σt)dτ(5.38)

≤
∫

R
ηε

1(τ)τ
2C2

vdτ = ε2C1C
2
v .(5.39)
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To obtain Equation 5.38 we have used the dual formulation of the
Wasserstein distance Equation 2.2 and the fact that (u, v) ∈ U . We
have used Remark 2.11 to obtain Equation 5.39. Since

∫
RD udσ

ε
t +∫

RD vdσt ≤ εCCv for arbitrary (u, v) ∈ U , we conclude that (iii) holds.
QED.

Remark 5.20. Assume that for each t ∈ (a, b) there exists ρt > 0 such
that σt = ρtLD. Let φ ∈ Cc(RD). Setting Iφ(t) :=

∫
RD〈φ, vt〉ρtdLD, we

have

(5.40) |
∫

RD

〈φ, vε
t〉ρε

tdLD| = |ηε
1 ∗ Iφ(t)| ≤ ||φ||∞ Cv.

Corollary 5.21. Suppose that for each t ∈ (a, b) there exists ρt > 0
such that σt = ρtLD. Then, for each t ∈ [a, b], {σε

t}ε>0 converges to
σt in M as ε tends to zero. For L1–almost every t ∈ [a, b], {σε

tv
ε
t}ε>0

converges weak-∗ to σtvt as ε tends to zero.

Proof: By Lemma 5.19 (iii), {σε
t}ε>0 converges to σt in M as ε tends

to zero.
Let C be a countable family in Cc(RD). For each φ ∈ Cc(RD), the

set of Lebesgue points of Iφ is a set of full measure in [a, b]. For these
points ηε

1 ∗ Iφ(t) tends to Iφ(t) as ε tends to zero. Thus there is a set S
of full measure in [a, b] such that for all φ ∈ C and all t ∈ S, ηε

1 ∗ Iφ(t)
tends to Iφ(t) as ε tends to zero. The S ′ of Lebesgue points of V is a
set of full measure in [a, b]. Fix ϕ ∈ Cc(RD) and choose δ > 0 arbitrary.
Let φ ∈ C be such that ||ϕ− φ||∞ ≤ δ. Note that

|ηε
1 ∗ Iϕ(t)− Iϕ(t)| ≤ |ηε

1 ∗ Iφ(t)− Iφ(t)|+ |ηε
1 ∗ Iφ−ϕ(t)|+ |Iφ−ϕ(t)|.

We use inequality 5.40 to conclude that

|ηε
1 ∗ Iϕ(t)− Iϕ(t)| ≤ |ηε

1 ∗ Iφ(t)− Iφ(t)|+ 2δCv.

If t ∈ S∩S ′, the previous inequality gives that lim supε→0 |ηε
1∗Iϕ(t)−

Iϕ(t)| ≤ 2δCv. Since δ > 0 is arbitrary we conclude that limε→0 |ηε
1 ∗

Iϕ(t)− Iϕ(t)| = 0. QED.

Corollary 5.22. Suppose σ̄ ∈ AC2(a, b;M) for all a < b, v̄ is a veloc-
ity associated to σ̄ and ∞ > C := supt∈[a,b] ||v̄t||σ̄t . Define

f r
t (x) :=

∫
RD

ηr
D(x− y)dσ̄t(y), σ̄r

t := f r
t LD,

f r
t (x)v̄r

t (x) :=

∫
RD

ηr
D(x− y)v̄t(y)dσ̄t(y).
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As in Equation 5.34, we define for 0 < ε < 1,

ρε,r
t (x) :=

∫
R
ηε

1(t− τ)f r
τ (x)dτ, σε,r

t := ρε,rLD,

ρε,r
t (x)vε,r

t (x) :=

∫
R
ηε

1(t− τ)f r
τ (x)vτ (x)dτ.

Then,
(i) v̄r is a velocity associated to σ̄r and, for each t ∈ (a, b), {σ̄r

t }r con-
verges to σ̄t in M as r tends to zero. For L1–almost every t ∈ (a, b),
||v̄r

t ||σ̄r
t
≤ C and {v̄r

t σ̄
r
t }r>0 converges weak-∗ to v̄tσ̄t as r tends to zero.

(ii) vε,r is a velocity associated to σε,r and, for each t ∈ (a, b), {σ̄ε,r
t }ε

converges to σ̄r
t inM as ε tends to zero. For every t ∈ (a, b), ||v̄ε,r

t ||σ̄ε,r
t
≤

C while for L1–almost every t ∈ (a, b), {v̄ε,r
t σ̄ε,r

t }r>0 converges weak-∗
to v̄r

t σ̄
r
t as ε tends to zero.

(iii) The function t → Λ̄σε,r
t

(vε,r
t ) is continuous while t → Λ̄σ̄t(v̄t) is

measurable on (0, T ).
(iv) Suppose in addition that σ and v are time–periodic:

σ̄t = σ̄t−[t/T ]T , v̄t = v̄t−[t/T ]T .

Here [·] stands for the greatest integer function. Then σε,r
0 = σε,r

T and
vε,r

0 = vε,r
T .

Proof: It is well known that ||v̄r
t ||σ̄r

t
≤ ||v̄t||σ̄t ≤ C (see [4] Lemma

8.1.10) so, by Remark 2.11 (i), σ̄ ∈ AC2(a, b;M). One can readily
check that v̄r is a velocity associated to σ̄r. Lemma 5.19 shows that,
for each t ∈ (a, b), {σ̄r

t }r converges to σ̄t in M as r tends to zero. Let
ϕ ∈ Cc(RD,RD). Set ϕr := ηr

D ∗ ϕ. Since {ϕr}r>0 converges uniformly
to ϕ,

lim
r→0

∫
RD

〈ϕ, v̄r
t 〉dσ̄r

t =

∫
RD

〈v̄t, ϕ
r〉dσ̄t.

Thus {v̄r
t σ̄

r
t }r>0 converges weak-∗ to v̄tσ̄t as r tends to zero. This

proves (i).
We next fix r > 0. For a moment we won’t display the dependence

in r. For instance we write vε instead of vε,r
t as in Equation 5.34. Note

that ρε ∈ C1([a, b] × RD), ρε > 0 and ρε
t is a probability density. Also

vε
t ∈ C1([a, b] × RD,RD) and vε is a velocity associated to σε. Fix
t ∈ [ā, b̄] ⊂ (a, b). Lemma 5.19 gives that ||vε

t ||σε
t
≤ C for all ε > 0

small enough. By Corollary 5.21 {vε
tσ

ε
t}ε>0 converges weak-∗ to vtσt as

ε tends to zero. This proves (ii).
By Lemma 5.16, t→ Λ̄σε

t
(vε

t) is continuous in (a, b). Hence by (ii) t→
Λ̄σ̄r

t
(v̄r

t ) is measurable as a pointwise limit of measurable functions. We
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then use (i) to conclude that t→ Λ̄σ̄t(v̄t) is measurable as a pointwise
limit of measurable functions. This proves (iii). The proof of (iv) is
straightforward. QED.

5.5. Integration of regular pseudo 1-forms. We can now study
the properties of regular pseudo 1-forms with respect to integration.

Corollary 5.23. Let σ ∈ AC2(a, b;M) and let v be a velocity asso-
ciated to σ. Suppose t → ||vt||σt is square integrable on (a, b). Then
t→ Λ̄σt(vt) is measurable and square integrable on (a, b).

Proof: Let σ̄ be the reparametrization of σ as introduced in Remark
2.13 and let v̄ be the associated velocity. By Corollary 5.22 (iii), be-
cause sups∈[0,L] ||v̄s||σ̄s ≤ 1, we have that s → Λ̄σ̄s(v̄s) is measurable.

But Λ̄σt(vt) = Ṡ(t)Λ̄σ̄S(t)
(v̄S(t)). Thus t→ Λ̄σt(vt) is measurable.

By Corollary 5.10 there exists a constant Cσ independent of t such
that ||Āσt||σt ≤ Cσ for all t ∈ [a, b]. Thus

|Λ̄σt(vt)| =
∣∣∣∫

RD

〈Āσt , vt〉dσt

∣∣∣ ≤ ||Āσt||σt||vt||σt ≤ Cσ||vt||σt .

Since t→ ||vt||σt is square integrable, the previous inequality yields the
proof. QED.

Corollary 5.24. Suppose {σr}0≤r≤c ⊂ AC2(a, b;M), vr is a veloc-
ity associated to σr and ∞ > C := sup(t,r)∈E ||vr

t ||σr
t

where E :=

[a, b] × [0, c]. Suppose that, for L1–almost every t ∈ (a, b), {vr
tσ

r
t }r>0

converges weak-∗ to vtσt and {σr
t }r>0 converges in M to σt as r tends

to zero. If (t, r) → σr
t is continuous at every (t, 0) ∈ [a, b] × {0} then

limr→0

∫ b

a
Λ̄σr(vr)dt =

∫ b

a
Λ̄σ(v)dt. Here we have set σt := σ0

t .

Proof: By Lemma 5.10 we may assume without loss of generality that
||Āσr

t
||σr

t
is bounded on E by a constant C̄ independent of (t, r) ∈ E.

We obtain

(5.41) sup
(t,r)∈E

|Λ̄σr
t
(vr

t )| ≤ sup
(t,r)∈E

||Āσr
t
||σr

t
||vr

t ||σr
t
≤ C̄C.

Corollary 5.15 ensures that limr→0 Λ̄σr
t
(vr

t ) = Λ̄σt(vt) for L1–almost
every t ∈ [a, b]. This, together with Equation 5.41 shows that, as r
tends to 0, the sequence of functions t → Λ̄σr

t
(vr

t ) converges to the
function t→ Λ̄σt(vt) in L1(a, b). This proves the corollary. QED.
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Definition 5.25. Let σ ∈ AC2(a, b;M) and let v be a velocity as-
sociated to σ. Suppose t → ||vt||σt is square integrable on (a, b). By
Corollary 5.23, t→ Λ̄σt(vt) is also square integrable on (a, b). It is thus

meaningful to calculate the integral
∫ b

a
Λ̄σt(vt)dt.

We will call
∫ b

a
Λ̄σt(vt)dt the integral of Λ̄ along (σ, v). When v is the

velocity of minimal norm we will write this simply as
∫ b

a
Λ̄ and call it

the integral of Λ̄ along σ.

Remark 5.26. Suppose that r : [c, d] → [a, b] is invertible and Lipschitz.
Define σ̄s = σr(s). Then σ̄ ∈ AC2(c, d;M) and v̄s(x) = ṙ(s)vr(s)(x) is a

velocity for σ̄. Furthermore,
∫ d

c
Λ̄σ̄t(v̄t)dt =

∫ b

a
Λ̄σt(vt)dt.

Proof: Let β ∈ L2(a, b) be as in Definition 2.10. Then

W2(σr(s+h), σr(s)) ≤
∣∣∣∫ r(s+h)

r(s)

β(t)dt
∣∣∣ =

∣∣∣∫ s+h

s

β̄(τ)dτ
∣∣∣,

where β̄(s) := |ṙ(s)|β(r(s)). Because β̄ ∈ L2(c, d) we conclude that σ̄ ∈
AC2(c, d;M). Direct computations give that, for L1 a.e. s ∈ (c, d),

lim
h→0

W2(σr(s+h), σr(s))/|h| = |ṙ(s)| |σ′|(r(s)).

Thus |σ̄′|(s) = |ṙ(s)| |σ′|(r(s)). Let φ ∈ C∞
c (RD) and let v be a velocity

for σ (see Proposition 2.12). The chain rule shows that, in the sense of
distributions,

d

ds

∫
RD

φdσr(s) = ṙ(s)〈∇φ, vr(s)〉σr(s)
= 〈∇φ, v̄s〉σ̄s ,

where v̄s(x) = ṙ(s)vr(s)(x). Thus v̄ is a velocity for σ̄. Using the linearity
of Λ̄ we have∫ d

c

Λ̄σ̄s(v̄s)ds =

∫ d

c

ṙ(s)Λ̄σr(s)
(vr(s))ds =

∫ b

a

Λ̄σt(vt)dt.

This concludes the proof. QED.

5.6. Green’s formula for annuli, and the cohomology of regular
pseudo 1-forms. Let σ ∈ AC2(a, b;M) and let v be its velocity of
minimal norm (see Proposition 2.12). The following proposition is
extracted from [4] Theorem 8.3.1 and Proposition 8.4.5.

Proposition 5.27. Let N1 be the set of t such that vt fails to be in

TσtM. Let N2 be the set of t ∈ [a, b] such that
(
π1 × (π2 − π1)/h

)
#
ηh

fails to converge to (Id × vt)σt in the Wasserstein space P2(RD ×RD),
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for some ηh ∈ Γo(σt, σt+h). Let N be the union of N1 and N2. Then
L1(N ) = 0.

As in Section 5.3, for r ∈ (0, 1) and s ∈ [r, 1] we define

Dsz := sz, σ(s, t) = σs
t := Ds#σt,

w(s, t, ·) = ws
t (z) :=

z

s
= D−1

s z, v(s, t, ·) = vs
t := Ds∗vt.

According to Lemma 4.2, for each s ∈ [r, 1], σ(s, ·) ∈ AC2(a, b;M)
admits v(s, ·) as a velocity. For each t and φ ∈ C∞

c (RD), in the sense
of distributions,

d

ds

∫
RD

φdσs
t =

d

ds

∫
RD

φ(sx)dσt(x)

=

∫
RD

〈∇φ(sx), x〉dσt(x) =

∫
RD

〈∇φ,ws
t 〉dσs

t .

Thus w(·, t) is a velocity for σ(·, t). We assume that

||σ′||∞ := sup
t∈[a,b]

||vt||σt <∞.

By Remark 2.11,

c0σ := sup
t∈[a,b]

W2(σt, δ0) <∞.

By the fact that Ds#σt = σs
t we have

(5.42) W 2
2 (σs

t , δ0) = s2W 2
2 (σt, δ0) ≤ s2c0σ ≤ C̄σ.

Here, we are free to choose C̄σ to be any constant greater than c0σ.

Remark 5.28. Note that (1 + h/s)Id pushes σs
t forward to σs+h

t and is
the gradient of a convex function. Thus

γh :=
(
Id × (1 + h/s)Id

)
#
σs

t ∈ Γo(σ
s
t , σ

s+h
t ).

For γh–almost every (x, y) ∈ RD × RD we have y = (1 + h/s)x, so

(5.43) vs+h
t (y) = (s+h)vt(

y

s+ h
) = (1+

h

s
)vs

t (
sy

s+ h
) = (1+

h

s
)vs

t (x).

Using the definition of σs
t and vs

t we obtain the identities

(5.44) ||Id ||σs
t

= s||Id ||σt ≤ sC̄σ, ||vs
t ||σs

t
= s||vt||σt ≤ s||σ′||∞.

We use the first identity in Equation 5.44 and the fact that (1+h/s)Id
pushes σs

t forward to σs+h
t to obtain

(5.45) W 2
2 (σs

t , σ
s+h
t ) =

h2

s2
||Id ||2σs

t
= h2||Id ||2σt

= h2W 2
2 (σt, δ0) ≤ h2C̄2

σ.
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Set

V (s, t) := Λ̄σs
t
(vs

t ), W (s, t) := Λ̄σs
t
(ws

t )

Lemma 5.29. For each t ∈ (a, b) \ N , the function V (t, ·) is dif-
ferentiable on (r, 1) and its derivative is bounded by a constant L1(r)
depending only on σ and r. Furthermore

∂sV (s, t) =

∫
RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x)+

∫
RD

〈Bσs
t
(x)ws

t (x), v
s
t (x)〉dσs

t (x).

Proof: Let Cσ(r) be as in Corollary 5.13 and let C̄σ be as in Equation
5.42. We use Equations 5.13, 5.43 and then Hölder’s inequality to
obtain
(5.46)

|V (s+h, t)−V (s, t)| ≤ h

s
||Āσs

t
||σs

t
||vs

t ||σs
t
+2c(Λ̄)W2(σ

s
t , σ

s+h
t )||vs+h

t ||σs+h
t
.

We combine Equations 5.44, 5.45 and 5.46 to conclude that

(5.47) |V (s+h, t)−V (s, t)| ≤ hCσ(r)||σ′||∞+2hc(Λ̄)C̄σ(s+h)||σ′||∞.

This proves that V (·, t) is Lipschitz on (r, 1) and that its derivative is
bounded by a constant L1(r). As in Remark 5.8,

lim
h→0

V (s+ h, t)− V (s, t)

h
(5.48)

= lim
h→0

∫
RD×RD

〈Āσs
t
(x),

vs+h
t (y)− vs

t (x)

h
〉dγh

+

∫
RD×RD

〈Bσs
t
(x)

y − x

h
, vs+h

t (y)〉dγh

+
1

h

∫
RD×RD

〈Āσs+h
t

(y)− Āσs
t
(x)−Bσs

t
(x)(y − x), vs+h

t (y)〉dγh.

By Equation 5.11, the last inequality in Equation 5.44 and Equation
5.45 we have
(5.49)

lim
h→0

1

h

∫
RD×RD

〈Āσs+h
t

(y)−Āσs
t
(x)−Bσs

t
(x)(y−x), vs+h

t (y)〉dγh(x, y) = 0.
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We use Equations 5.43, 5.48, 5.49 and the fact that, for γs,h
t –almost

every (x, y) ∈ RD × RD, y = (1 + h/s)x to conclude that

lim
h→0

V (s+ h, t)− V (s, t)

h

=

∫
RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x) + lim
h→0

∫
RD

〈Bσs
t
(x)

x

s
, (1 +

h

s
)vs

t (x)〉dσs
t (x)

=

∫
RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x) +

∫
RD

〈Bσs
t
(x)ws

t (x), v
s
t (x)〉dσs

t (x).

This proves the lemma. QED.

Lemma 5.30. For each s ∈ [r, 1] and t ∈ (a, b) \ N , the function
W (s, ·) is differentiable at t and its derivative is bounded by a constant
L2(r) depending only on σ and r. Furthermore

∂tW (s, t) =

∫
RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x)+

∫
RD

〈ws
t (x), Bσs

t
(x)vs

t (x)〉dσs
t (x).

Proof: We would like to apply Lemmas 5.17 and 5.18 with Xt sub-
stituted by ws

t and σt substituted by σs
t . It suffices to show that if

t ∈ (a, b) \ N and γs
h ∈ Γo(σ

s
t , σ

s
t+h) then

(
π1 × (π2 − π1)/h

)
#
γs

h con-

verges to (Id × vs
t )σs

t
in P2(RD × RD) as h tends to 0. Set

γh :=
(
D−1

s ×D−1
s

)
#
γs

h.

Since

π1 ◦
(
D−1

s ×D−1
s

)
= D−1

s ◦ π1 and π2 ◦
(
D−1

s ×D−1
s

)
= D−1

s ◦ π2,

we conclude that γh ∈ Γ(σt, σt+h). By the fact that the support of γs
h

is cyclically monotone, we have that the support of γh is also cyclically
monotone. Hence γh ∈ Γo(σt, σt+h). We have(

π1 × π2 − π1

h

)
#
γs

h

=
(
Ds ×Ds

)
#

(
(
π2 − π1

h
)#γh

)
→

(
Ds ×Ds

)
◦ (Id × vt)#σt

= (Id × vs
t )#σ

s
t .

QED.

Corollary 5.31. For each s ∈ (r, 1) and t ∈ (a, b) \ N we have

∂t

(
Λ̄σs

t
(ws

t )
)
− ∂s

(
Λ̄σs

t
(vs

t )
)

= dΛ̄σs
t
(vs

t , w
s
t ).
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Proof: This corollary is a direct consequence of Lemmas 5.12, 5.29
and 5.30. QED.

Remark 5.32. Notice that, unlike the setting of Proposition 5.2, in
Lemma 5.29 and Corollary 5.31 we don’t assume that v ∈ C1((r, 1] ×
(a, b)×RD,RD).Although possibly neither∇vs

t nor ∂sv
s
t exist, Equation

5.43 ensures that ||vs+h
t ◦ π2 − vs

t ◦ π1||γh ≤ h||σ′||∞. That inequality
was crucial in the proof of Lemma 5.29.

Theorem 5.33 (Green’s formula on the annulus). Consider in M the
surface S(s, t) = Ds#σ for (s, t) ∈ [r, 1] × [0, T ] and its boundary ∂S
which is the union of the negatively oriented curves S(r, ·), S(·, T ) and
the positively oriented curves S(1, ·), S(·, 0). Then∫

S

dΛ̄ =

∫
∂S

Λ̄.

Proof: We use Corollary 5.31 to obtain∫
S

dΛ̄ =

∫ T

0

dt

∫ 1

r

dΛ̄S(s,t)(v
s
t , w

s
t )ds

=

∫ T

0

dt

∫ 1

r

[
∂t

(
Λ̄S(s,t)(w

s
t )

)
− ∂s

(
Λ̄S(s,t)(v

s
t )

)]
ds

=

∫ 1

r

(
Λ̄S(s,T )(w

s
T )− Λ̄S(s,0)(w

s
0)

)
ds−

∫ T

0

(
Λ̄S(1,t)(v

1
t )− Λ̄S(r,t)(v

r
t )

)
dt

=

∫
∂S

Λ̄.

QED.

Corollary 5.34. If we further assume that Λ̄ is a closed pseudo 1–form

and that σ0 = σT , then
∫ T

0
Λ̄σt(vt)dt = 0.

Proof: For s ∈ [r, 1] define

l(s) =

∫ T

0

Λ̄S(s,t)(v
s
t )dt, l̄(t) =

∫ 1

r

Λ̄S(s,t)(w
s
t )ds.

Since ws
T = ws

0 and σs
T = Ds#σT = Ds#σ0 = σs

0, we have l̄(T ) = l̄(0).
This, together with Theorem 5.33 and the fact that dΛ̄ = 0, yields
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0
Λ̄σt(vt)dt = l(1) = l(r). But

|l(r)| ≤
∫ T

0

|Λ̄S(s,t)(v
r
t )|dt ≤

∫ T

0

||ĀS(s,t)||S(s,t)||vr
t ||S(s,t)dt(5.50)

≤ r||σ′||∞
∫ T

0

||ĀS(s,t)||S(s,t)dt,

where we have used the last inequality in Equation 5.44. The first in-
equality in Equation 5.42 shows that, for r small enough, {S(s, t)}t∈×[0,T ])

is contained in a small ball centered at δ0. But Lemma 5.10 gives that
µ → ||Āµ||µ is continuous at δ0. Thus there exist constants c and r0
such that ||ĀS(s,t)||S(s,t) ≤ c for all t ∈ [0, T ] and all r < r0. We can
now exploit Equation 5.50 to obtain

|l(1)| = lim inf
r→0

|l(r)| ≤ lim inf
r→0

rTc||σ′||∞ = 0.

QED.

Corollary 5.35. Let Λ̄ be a regular pseudo 1–form onM. Let Λ denote
the corresponding 1–form on M, defined by restriction. Assume Λ̄ is
closed, i.e. dΛ̄ = 0. Then Λ is exact, i.e. there exists a differentiable
function F on M such that dF = Λ.

Proof: Fix µ ∈ M. Let σ be any curve in AC2(a, b;M) such that
σa = δ0 and σb = µ. Assume that v is its velocity of minimal norm and
that sup(a,b) ||vt||σt < ∞. By Corollary 5.34,

∫
σ
Λ̄ depends only on µ,

i.e. it is independent of the path σ. Also, Remark 5.26 ensures that∫
σ
Λ̄ is independent of a, b. It is thus meaningful to define

F (µ) :=

∫
σ

Λ̄.

We now want to show that F is differentiable. Fix µ, ν ∈ M and
γ ∈ Γo(µ, ν). Define σt := ((1− t)π1 + tπ2)#γ. Then σ : [0, 1] →M is
a constant speed geodesic between µ and ν. Let vt denote its velocity
of minimal norm. Clearly,

F (ν)− F (µ) =

∫ 1

0

Λ̄σt(vt)dt.(5.51)

Let γ̄ : RD → RD denote the barycentric projection of γ, cfr. [4]
Definition 5.4.2. Set v := γ̄ − Id. Then γt := (π1, (1− t)π1 + tπ2)#γ ∈
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Γo(σ0, σt) and

Λ̄σt(vt)− Λ̄σ0(v)

=

∫
RD×RD

〈Āσ0(x), vt(y)− v(x)〉+ 〈Bσ(0)(x)(y − x), vt(y)〉dγt(x, y)

+

∫
RD×RD

〈Āσt(y)− Āσ0(x)−Bσ0(x)(y − x), vt(y)〉dγt(x, y).

By Equation (5.8) and Hölder’s inequality,∣∣∫
RD×RD

〈Āσt(y)− Āσ0(x)−Bσ0(x)(y − x), vt(y)〉dγt(x, y)
∣∣

≤ o(W2(σ0, σt)) ||vt||σt .

It is well known (cfr. [4] Lemma 7.2.1) that if 0 < t ≤ 1 then there
exists a unique optimal transport map T 1

t between σt and σ1, i.e.

Γo(σt, σ1) = {(Id × T 1
t )#σt}. One can check that vt(y) =

T 1
t (y)−y

1−t
and

||vt||σt = W2(σt, σ1)/(1− t) = W2(σ0, σ1). Thus∫
RD×RD

〈Āσ0(x), vt(y)− v(x)〉dγt(x, y)

=

∫
〈Āσ0(x),

T 1
t (y)− y

1− t
− (γ̄(x)− x)〉dγt(x, y)

=

∫
〈Āσ0(x),

z − ((1− t)x+ tz)

1− t
− (z − x)〉dγ(x, z) = 0.

Similarly, ∫
RD×RD

〈Bσ0(x)(y − x), vt(y)〉dγt(x, y)

= t

∫
RD×RD

〈Bσ0(x)(z − x), z − x〉dγ(x, y)

= o(W2(σ0, σ1)) = o(W2(µ, ν)).

Combining these equations shows that

Λ̄σt(vt)− Λ̄σ0(v) = o(W2(µ, ν)).(5.52)

Notice that (5.52) is independent of t. Combining (5.51) and (5.52) we
find

F (ν) = F (µ) + Λ̄σ0(v) +

∫ 1

0

Λ̄σt(vt)− Λ̄σ0(v)dt

= F (µ) + Λ̄σ0(v) + o(W2(µ, ν))

= F (µ) +

∫
RD×RD

〈Āσ0(x), y − x〉dγ(x, y) + o(W2(µ, ν)).
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As in Definition 4.11, this proves that F is differentiable and that
∇µF = πµ(Āµ). Thus dF = Λ. QED.

Remark 5.36. Recall from Section 3.2 that the tangent spaces of Section
2.3 should intuitively be thought of as tangent to the orbits Oµ '
Diffc(RD)/Diffc,µ(RD). In this sense Corollary 5.35 shows that the first
de Rham cohomology group H1(Oµ; R) of each orbit vanishes. Notice
that if µ is a Dirac measure then Oµ = RD, so this result makes sense.
Now recall that, for a finite-dimensional manifold M , the first de Rham
cohomology group is closely related to the topology of M , as follows:
H1(M ; R) = Hom(π1(M),R), where the latter denotes the space of
group homomorphisms from the first fundamental group π1(M) to R.
For general µ, Oµ is not a manifold so it is not a priori clear that there
exists any relationship between our H1(Oµ; R) and π1(Oµ). However,
we can informally prove the topological counterpart of Corollary 5.35
as follows.

Let G be a finite-dimensional Lie group and H be a closed subgroup.
Recall that there exists a homotopy long exact sequence

· · · → π1(H) → π1(G) → π1(G/H) → π0(H) → π0(G) . . . ,

cfr. e.g. [10], VII.5. Now assume G is connected, i.e. π0(G) = 1. We
can then dualize the final part of this sequence obtaining a new exact
sequence

(5.53) 1 → Hom(π0(H),R) → Hom(π1(G/H),R) → Hom(π1(G),R).

Now set G := Diffc(RD) and H := Diffc,µ(RD). In many cases it is
known that π1(G) is finite: specifically, this is true at least for D =
1, 2, 3 and D ≥ 12, cfr. [5] for related results. Let us assume that H
has a finite number of components and that the homotopy long exact
sequence is still valid in this infinite-dimensional setting. Sequence 5.53
then becomes

1 → 1 → Hom(π1(Oµ),R) → 1,

so by exactness Hom(π1(Oµ),R) must also be trivial.

5.7. Example: 1-forms on the space of discrete measures. Fix
an integer n ≥ 1. Given x1, · · · , xn ∈ RD, set x := (x1, · · · , xn) and
µx := 1/n

∑n
i=1 δxi

. Let M denote the set of such measures and TM
denote its tangent bundle, cfr. Examples 2.2 and 2.8. Choose a regular
pseudo 1–form Λ̄ on M. By restriction we obtain a 1–form α on M ,
defined by αx := Λ̄µx . Let A : RnD → RnD be defined by

A(x) = (A1(x), · · · , An(x)) :=
(
Āµx(x1), · · · , Āµx(xn)

)
.
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Notice that if X = (X1, · · · , Xn) ∈ RnD satisfies Xi = Xj whenever
xi = xj then αx(X) = 1

n
〈A(x), X〉. Now define a nD×nD matrix B(x)

by setting
(5.54)

Bk+i,k+j :=
(
Bµx(xk+1)

)
ij
, for k = 0, · · ·n− 1, i, j = 1, · · · , D,

(5.55)
Bl,m := 0 if (l,m) 6∈ {(k+i, k+j) : k = 0, · · ·n−1, i, j = 1, · · · , D}.

Proposition 5.37. The map A : RnD → RnD is differentiable and
∇A(x) = B(x) for x ∈ RnD.

Proof: Let x = (x1, · · · , xn) ∈ RnD. Set r := minxi 6=xj
|xi − xj|.

If y = (y1, · · · , yn) ∈ RnD and |y − x| < r/2 then Γo(µx, µy) has a
single element γy = 1/n

∑n
i=1 δ(xi,yi) and nW 2

2 (µx, µy) = |y − x|2. By
Equation 5.8,

(5.56) |A(y)− A(x)−B(x)(y − x)|2 = n o(
|y − x|2

n
).

This concludes the proof. QED.

Lemma 5.38. Suppose x = (x1, · · · , xn) ∈ RnD and X = (X1, · · · , Xn),
Y = (Y1, · · · , Yn) ∈ RnD are such that Xi = Xj, Yi = Yj whenever
xi = xj. Then

dΛ̄µx(X, Y ) = dαx(X, Y ).

Proof: We use Lemma 5.16 and Equations 5.54– 5.55 to obtain

dΛ̄µx(X, Y ) =
n∑

k=1

〈
(Bµx(xk)−Bµx(xk)

T )Xk, Yk

〉
= dαx(X, Y ).

QED.

Corollary 5.39. Suppose that r = (r1, · · · , rn) ∈ C2([0, T ],RnD) and
set σt := 1/n

∑n
i=1 δri(t). If Λ̄ is closed and σ0 = σT then

∫
σ
α = 0.

Proof: This is a direct consequence of Corollary 5.34. QED.

Remark 5.40. One can check by direct computation that the familiar
identity ∂t(αx(∂sx)) − ∂s(αx(∂tx)) = dαx(∂tx, ∂sx) holds. Together
with Lemma 5.38 this shows that

∂t

(
Λ̄σs

t
(ws

t )
)
− ∂s

(
Λ̄σs

t
(vs

t )
)

= dΛ̄σs
t
(vs

t , w
s
t ),

which we used to prove Theorem 5.34.
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Remark 5.41. Notice that the assumption σ0 = σT is weaker than
r(0) = r(T ).

6. A symplectic foliation of M via Hamiltonian
diffeomorphisms

In Section 3.2 we used the action of the group of diffeomorphisms
Diffc(RD) to build a foliation of M: this allowed us to formally recon-
struct the differential calculus on M. We now specialize to the case
D = 2d. In this case the underlying manifold R2d has a natural extra
structure, the symplectic structure ω. The goal of this section is to
use this extra data to build a second, finer, foliation of M; we then
prove that each leaf of this foliation admits a symplectic structure Ω.
The foliation is obtained via a smaller group of diffeomorphisms de-
fined by ω, the Hamiltonian diffeomorphisms. Section 6.1 provides an
introduction to this group, cfr. [34] or [30] for details.

6.1. The group of Hamiltonian diffeomorphisms. Recall that a
symplectic structure on a finite-dimensional vector space V is a 2-form
ω : V × V → R such that

(6.1) ω[ : V → V ∗, v 7→ ivω

is injective. Then ω[ is an isomorphism; we will denote its inverse by
ω].

Let M be a smooth manifold of dimension D := 2d. A symplectic
structure on M is a smooth closed 2-form ω satisfying Equation 6.1 at
each tangent space V = TxM ; equivalently, such that ωd is a volume
form on M . Notice that, since dω = 0, Cartan’s formula A.13 shows
that LXω = diXω. Throughout this section, to simplify notation, we
will drop the difference between compact and noncompact manifolds
but the reader should keep in mind that in the latter case we always
silently restrict our attention to maps and vector fields with compact
support.

Consider the set of symplectomorphisms of M , i.e.

Symp(M) := {φ ∈ Diff(M) : φ∗ω = ω}.
This is clearly a subgroup of Diff(M). Using the methods of Section
A.3 (see in particular Remark A.21) one can show that it has a Lie
group structure. Its tangent space at Id, thus its Lie algebra, is by
definition isomorphic to the space of closed 1-forms on M . Via ω] and
Formula A.13 this space is isomorphic to the space of symplectic or
locally Hamiltonian vector fields, i.e.

SympX := {X ∈ X (M) : LXω = 0}.
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Remark 6.1. Equation A.9 confirms that SympX is closed under the
bracket operation, i.e. that it is a Lie subalgebra of X (M). Equation
A.10 confirms that SympX is closed under the push-forward operation,
i.e. under the adjoint representation of Symp(M) on SympX , cfr.
Lemma A.20.

We say that a vector field X on M is Hamiltonian if the correspond-
ing 1-form ξ := ω(X, ·) is exact: ξ = df . We then write X = Xf . This
defines the space of Hamiltonian vector fields HamX . It is useful to
rephrase this definition as follows. Consider the map

(6.2) C∞(M) → X (M), f 7→ df ' Xf := ω](df).

The Hamiltonian vector fields are the image of this map. This map
is linear. It is not injective: its kernel is the space of functions constant
on M . In Section 7.1 we will start referring to these functions as the
Casimir functions for the map of Equation 6.2.

Remark 6.2. We can rephrase the properties of the map of Equation
6.2 by saying that there exists a short exact sequence

(6.3) 0 → R → C∞(M) → HamX → 0.

As already mentioned, the function corresponding to a given Hamil-
tonian vector field is well-defined only up to a constant. In some cases
we can fix this constant via a normalization, i.e. we can build an
inverse map HamX → C∞(M). We then obtain an isomorphism be-
tween HamX and the space of normalized functions. For example, if
M is compact we can fix this constant by requiring that f have integral
zero,

∫
M
fωd = 0. If instead M = R2d and we restrict our attention

as usual to Hamiltonian diffeomorphisms with compact support, we
should restrict Equation 6.2 to the space R ⊕ C∞

c (R2d) of functions
which are constant outside of a compact set; by restriction we then get
an isomorphism C∞

c (R2d) ' HamX .

More generally, a time-dependent vector field Xt is Hamiltonian if
ω(Xt, ·) = dft for some curve of smooth functions ft. We say that the
diffeomorphism φ ∈ Diff(M) is Hamiltonian if it can be obtained as
the time t = 1 flow of a time-dependent Hamiltonian vector field Xft ,
i.e. if φ = φ1 and φt solves Equation A.8.

Let Ham(M) denote the set of Hamiltonian diffeomorphisms. It
follows from Lemma A.3 that all such maps are symplectomorphisms.
It is not immediately obvious that Ham(M) is closed under composition
but it is not hard to prove that this is indeed true, cfr. [34] Proposition
10.2 and Exercise 10.3. Once again, the methods of Section A.3 and
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Remark A.21 show that Ham(M) has a Lie group structure. Its tangent
space at Id, thus its Lie algebra, is isomorphic to the space of exact
1-forms, which via ω] corresponds to the space of Hamiltonian vector
fields.

It is a fundamental fact of Symplectic Geometry that ω defines a Lie
bracket on C∞(M) as follows:

{f, g} := ω(Xf , Xg) = df(Xg) = LXgf.

This operation is clearly bilinear and antisymmetric. The fact that
it satisfies the Jacobi identity, cfr. Definition A.2, follows from the
following standard result.

Lemma 6.3. Let φ ∈ Symp(M). Then φ∗Xf = Xφ∗f and φ∗{f, g} =
{φ∗f, φ∗g}. Applying this to φt ∈ Symp(M) and differentiating, it
implies:

(6.4) LXh
{f, g} = {LXh

f, g}+ {f,LXh
g}.

Lemma 6.4. The map f 7→ Xf has the following property:

X{f,g} = −[Xf , Xg].

Proof: It is enough to check that dh(X{f,g}) = −dh([Xf , Xg]), for all
h ∈ C∞(M). As usual, it will simplify the notation to set X(f) :=
df(X). In particular Xf (h) = {h, f} and dh([X, Y ]) = X(Y (h)) −
Y (X(h)). Then:

X{f,g}(h) = {h, {f, g}} = −{f, {g, h}} − {g, {h, f}}
= −{{h, g}, f}+ {{h, f}, g}
= −Xf (Xg(h)) +Xg(Xf (h)) = −[Xf , Xg](h).

QED.

Recall from Section A.3 the negative sign appearing in the Lie bracket
[·, ·]g on vector fields. It follows from Lemma 6.4 that the map of Equa-
tion 6.2 is a Lie algebra homomorphism between C∞(M) and the space
of Hamiltonian vector fields, endowed with that Lie bracket.

Remark 6.5. Lemma 6.4 confirms that HamX is a Lie subalgebra of
X (M). Lemma 6.3 confirms that it is closed under symplectic push-
forward, so in particular it is closed under the adjoint representation
of Ham(M).
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Remark 6.6. Notice that Ham(M) is connected by definition. If M
satisfies H1(M,R) = 0, i.e. every closed 1-form is exact, then every
symplectic vector field is Hamiltonian. Now assume that φ ∈ Symp(M)
is such that there exists φt ∈ Symp(M) with φ0 = Id and φ1 = φ. It
then follows from Lemma A.3 that φ is Hamiltonian, i.e. that the con-
nected component of Symp(M) containing the identity coincides with
Ham(M). In particular this applies to M = R2d, so in later sections
we could just as well choose to work with (the connected component
containing Id of) Sympc(R2d) rather than with Hamc(R2d). We choose
however not to do this, so as to emphasize the fact that for general M
the two groups are indeed different and that generalizing our construc-
tions would require working with Ham(M) rather than with Symp(M).

Remark 6.7. In many cases it is known that Symp(M) is closed in
Diff(M) and that Ham(M) is closed in Symp(M), see [34] and [36] for
details.

6.2. A symplectic foliation of M. The manifold R2d has a natural
symplectic structure defined by ω := dxi ∧ dyi. Let J denote the
natural complex structure on R2d, defined with respect to the basis
∂x1, . . . , ∂xd, ∂y1, . . . , ∂yd by the matrix

J =

(
0 −I
I 0

)
.

Notice that ω(·, ·) = g(J ·, ·). It follows from this that Hamiltonian
vector fields on R2d satisfy the identity

(6.5) Xf = −J∇f.
Set G := Hamc(R2d), the group of compactly-supported Hamiltonian

diffeomorphisms on R2d. Let HamXc denote the corresponding Lie
algebra, i.e. the space of compactly supported Hamiltonian vector
fields on R2d. The push-forward action of Diffc(R2d) on M restricts to
an action of G. The corresponding orbits and stabilizers are

Oµ := {ν ∈M : ν = φ#µ, for some φ ∈ G}, Gµ := {φ ∈ G : φ#µ = µ}.
Notice that this action provides a second foliation of M, finer than the
one of Section 3.2.

Example 6.8. As in Example 2.2, let ai (i = 1, . . . , n) be a fixed
collection of positive numbers such that

∑
ai = 1 and x1, . . . , xn ∈ R2d

be n distinct points. Set µ =
∑n

i=1 ai δxi
∈M and

O =

{ n∑
i=1

ai δx̄i
: x̄1, . . . , x̄n ∈ R2d are distinct

}
.
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Since smooth Hamiltonian diffeomeorphisms are one-to-one maps of
R2d it is clear that Oµ ⊆ O. Given any x̄1 ∈ R2d \ {x2, . . . , xn} one can
show that there exists a Hamiltonian diffeomorphism φ with compact
support such that φ(x1) = x̄1 and φ(xi) = xi for i 6= 1. Thus, setting
µ̄ := a1 δx̄1 +

∑n
i=2 ai δxi

, we see that µ̄ ∈ Oµ. Repeating the argument
n− 1 times we conclude that O ⊆ Oµ, so O = Oµ.

Definition 6.9. Let µ ∈ M. Consider the L2(µ)-closure HamXc
µ

of
HamXc. We can restrict the operator divµ to this space; we will con-
tinue to denote its kernel Ker(divµ). We define the symplectic tangent
subspace at µ to be the Hilbert space

TµO := HamXc
µ
/Ker(divµ) ≤ L2(µ)/Ker(divµ).

Recall from Remark 2.7 the identification πµ : L2(µ)/Ker(divµ) →
TµM. By restriction this allows us to identify TµO with the subspace

πµ(HamXc
µ
) ≤ TµM. We define the pseudo symplectic distribution on

M to be the union of all spaces HamXc
µ
, for µ ∈M. It is a subbundle

of TM. We define the the symplectic distribution onM to be the union
of all spaces TµO, for µ ∈ M. Up to the above identification, it is a
subbundle of TM.

Remark 6.10. Recall that in general a Hilbert space projection will
not necessarily map closed subspaces to closed subspaces. Thus it is
not clear that πµ(HamXc

µ
) is closed in TµM. In other words, from

the Hilbert space point of view the two notions of TµO introduced in
Definition 6.9 are not necessarily equivalent. This is in contrast with
the two notions of TµM, cfr. Definition 2.5 and Remark 2.7.

Remark 6.11. Formally speaking the symplectic distribution is inte-
grable because it is the set of tangent spaces of the smooth foliation
defined by the action of G.

Example 6.12. It is interesting to compare the space HamXc
µ

to
the subspaces defined by Decomposition 2.5. For example, let µ = δx.
Recall from Example 2.8 that for any ξ ∈ L2(µ) there exists ϕ ∈ C∞

c

such that ξ(x) = ∇ϕ(x). Thus ∇C∞
c

µ
= L2(µ). Now choose any

X ∈ L2(µ) and apply this construction to ξ := JX. Then X(x) =
−J∇ϕ(x), so HamXc

µ
= L2(µ). This is the infinitesimal version of

Example 6.8. In particular, HamXc
µ

= ∇C∞
c

µ
.

The “opposite extreme” is represented by the absolutely continuous
case µ = ρL, for some ρ > 0. In this case if a Hamiltonian vector field
is a gradient vector field, e.g. −J∇v = ∇u, then the function u + iv
is holomorphic on Cd, so u and v are pluriharmonic functions on R2d

in the sense of the theory of several complex variables. This is a very
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strong condition: in particular, it implies that u and v are harmonic.
Thus HamXc ∩∇C∞

c = {0}.
We can also compare HamXc

µ
with Ker(divµ). When µ = δx we

saw in Example 2.8 that Ker(divµ) = {0}, so HamXc
µ ∩ Ker(divµ) =

{0}. On the other hand, assume µ = ρL for some ρ > 0. Then
divµ(X) = ρdiv(X) + 〈∇ρ,X〉. Choose X = −J∇f . Then div(X) = 0
so divµ(X) = 0 iff 〈∇ρ,−J∇f〉 = 0. Choosing in particular f = ρ
shows that HamXc ∩Ker(divµ) 6= {0}.

We now want to show that each TµO has a natural symplectic struc-
ture; this will justify the terminology of Definition 6.9. We rely on the
following general construction.

Definition 6.13. Let (V, ω) be a symplectic vector space. Let W be
a subspace of V . In general the restriction of ω to W will not be non-
degenerate. Set Z := {w ∈ W : ω(w, ·)|W ≡ 0}. Then ω reduces to a
symplectic structure on the quotient space W/Z, defined by

ω([w], [w′]) := ω(w,w′).

In our case we can set V := L2(µ) and W := HamXc
µ
. The 2-form

(6.6) Ω̂µ(X, Y ) :=

∫
R2d

ω(X, Y ) dµ

defines a symplectic structure on L2(µ). The restriction of Ω̂µ defines
a 2-form

Ωµ : HamXc
µ ×HamXc

µ → R.
Notice that Ω̂µ is continuous in the sense of Definition 4.6, so Ωµ can
also be defined as the unique continuous extension of the 2-form

(6.7) Ωµ : HamXc × HamXc → R, Ωµ(Xf , Xg) :=

∫
ω(Xf , Xg) dµ.

Notice also that, for any X ∈ L2(µ),

(6.8)

∫
ω(X,Xf ) dµ = −

∫
df(X) dµ = 〈divµ(X), f〉

so
∫
ω(X, ·) dµ ≡ 0 on HamXc

µ
iff X ∈ Ker(divµ). This calcula-

tion shows that the space Z of Definition 6.13 coincides with the space
Ker(divµ)∩HamXc

µ
. We can now define Ωµ to be the reduced symplec-

tic structure on the space TµO = W/Z. In terms of the identification
πµ, this yields

(6.9) Ωµ : TµO×TµO → R, Ωµ(πµ(Xf ), πµ(Xg)) :=

∫
ω(Xf , Xg) dµ.
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Using Equation 6.5 we can also write this as

Ωµ(πµ(Xf ), πµ(Xg)) =

∫
ω(J∇f, J∇g) dµ =

∫
g(J∇f,∇g) dµ.

We now want to understand the geometric and differential properties
of Ω. It is simple to check that Ω is G-invariant, in the sense that
φ∗Ω = Ω, for all φ ∈ G. Indeed, using Definition 4.10 and Lemma 6.3,

(φ∗Ω)µ(Xf , Xg) = Ωφ#µ(φ∗(Xf ), φ∗(Xg))

=

∫
R2d

ω(Xf◦φ−1 , Xg◦φ−1) dφ#µ

=

∫
R2d

{f ◦ φ−1, g ◦ φ−1} dφ#µ

=

∫
R2d

{f, g} ◦ φ−1 dφ#µ = Ωµ(Xf , Xg).

It then follows that Ω is also G-invariant.

Lemma 6.14. Given any X, Y, Z ∈ HamXc,

XΩ(Y, Z)− Y Ω(X,Z) + ZΩ(X,Y )(6.10)

−Ω([X, Y ], Z) + Ω([X,Z], Y )− Ω([Y, Z], X) = 0.

Proof: Notice that Ω(Y, Z) is a linear function on M in the sense
of Example 4.9. It is thus differentiable, cfr. Example 4.13, and
XΩ(Y, Z) =

∫
Xω(Y, Z) dµ. It follows that the left hand side of

Equation 6.10 reduces to
∫
dω(X, Y, Z) dµ, which vanishes because ω

is closed. QED.

This shows that Ω is differentiable and closed in the sense analogous
to Definition 4.14, i.e. using Equation A.11 with k = 2 instead of k = 1.
Using the terminology of Section 4.2 we can say that Ω is a closed
pseudo linear 2-form defined on the pseudo distribution µ→ HamXc

µ

of Definition 6.9.

Remark 6.15. As in Remark 6.10, it may again be useful to emphasize
a possible misconception related to the identification

πµ : HamXc
µ
/Ker(divµ) ' πµ(HamXc

µ
).

One could also restrict Ω̂µ to the subspace W ′ := πµ(HamXc
µ
), ob-

taining a 2-form

Ω′
µ(πµ(Xf ), πµ(Xg)) =

∫
ω(πµ(J∇f), πµ(J∇g)) dµ.
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It is important to realize that Ω′
µ does not coincide, under πµ, with Ωµ.

Specifically, Ω′
µ differs from Ωµ in that it does not take into account

the divergence components of Xf , Xg.
In the framework of [4] it is more natural to work in terms of the

subspace πµ(HamXc
µ
) ⊆ TµM than in terms of the quotient space

HamXc
µ
/Ker(divµ). From this point of view, the choice of Ωµ as a

symplectic structure on TµO may seem less natural than the choice of
Ω′

µ. The fact that Ωµ is even well-defined on TµO follows only from
Equation 6.8. Our reasons for preferring Ωµ are based on its geometric
and differential properties seen above. Together with Remark 6.10,
this shows that from a symplectic viewpoint the identification πµ is
not natural.

We can now define the concept of a Hamiltonian flow on M as fol-
lows.

Definition 6.16. Let F : M→ R be a differentiable function on M
with gradient∇F . We define the Hamiltonian vector field associated to
F to be XF (µ) := πµ(−J∇F ). A Hamiltonian flow on M is a solution
to the equation

∂ µt

∂t
= −divµt(XF ).

We refer to [3] and to [24] for specific results concerning Hamiltonian
flows on M.

6.3. Algebraic properties of the symplectic distribution. Re-
gardless of Remarks 6.10 and 6.15, from the point of view of [4] it is
interesting to understand the linear-algebraic properties of the sym-
plectic spaces (TµO,Ωµ), viewed as subspaces πµ(HamXc

µ
) ≤ TµM.

Throughout this section we will use this identification. We will mainly
work in terms of the complex structure J on R2d and of certain related
maps. This will also serve to emphasize the role played by J within
this theory. The key to this construction is of course the peculiar com-
patibility between the standard structures g := 〈·, ·〉, ω and J on R2d,
which we emphasize as follows.

Definition 6.17. Let V be a vector space endowed with both a metric
g and a symplectic structure ω. Recall that there exists a unique A ∈
Aut(V ) such that ω(·, ·) = g(A·, ·). Notice that under the isomorphism
V ' V ∗ induced by g, A coincides with the map ω[ of Equation 6.1.

The fact that ω is anti-symmetric implies that A is anti-selfadjoint,
i.e. A∗ = −A. We say that (ω, g) are compatible if A is an isometry,
i.e. A∗ = A−1. In this case A2 = −Id, i.e. A is a complex structure
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on V . A subspace W ≤ V is symplectic if the restriction of ω to W
is non-degenerate. In particular, if g and ω are compatible than any
complex subspace of V is symplectic.

The analogous definitions hold for a smooth manifold M endowed
with a Riemannian metric g and a symplectic structure ω. In general,
given any function f on M , the Hamiltonian vector field Xf is related
to the gradient field ∇f as follows: Xf = A−1∇f . If g and ω are
compatible then Xf = −A∇f .

The standard structures g and ω on R2d are of course the primary
example of compatible structures. Given any µ ∈ M, Ĝµ and Ω̂µ

(defined in Equations 2.4 and 6.6) are compatible structures on L2(µ).
In this case the corresponding automorphism is the isometry

J : L2(µ) → L2(µ), (JX)(x) := J(X(x)).

Remark 6.18. Notice that HamXc
µ

= −J(TµM). Thus HamXc
µ

is
J-invariant iff TµM is J-invariant iff TµO = TµM. In this case, Ωµ =
Ωµ = Ω′

µ. Example 6.12 shows that this is the case if µ is a Dirac
measure. Example 6.12 also shows that if µ = ρL for some ρ > 0
then the space ∇C∞

c is totally real, i.e. J(∇C∞
c )∩∇C∞

c = HamXc ∩
∇C∞

c = {0}.

Our first goal is to characterize the orthogonal complement of the
closure of TµO in TµM. Recall that any continuous map P : H → H on
a Hilbert space H satisfies Image(P )⊥ = Ker(P ∗), where P ∗ : H → H
is the adjoint map. This yields an orthogonal decomposition H =
Image(P )⊕Ker(P ∗).

Our first example of this is Decomposition 2.5, corresponding to the
map P := πµ defined on H := L2(µ): in this case Image(P ) is closed
and πµ is self-adjoint so Ker(P ∗) = Ker(πµ).

Now consider the map P := πµ ◦ J , again defined on L2(µ). In this
case P ∗ = −J ◦ πµ and Image(P ) = Image(πµ), Ker(P ∗) = Ker(πµ)
so the decomposition corresponding to P again coincides with Decom-
position 2.5. On the other hand, Image(P ∗) = −J(Image(πµ)) and
Ker(P ) = J−1(Ker(πµ)) = −J(Ker(πµ)) so the decomposition corre-
sponding to P ∗ is the (−J)-rotation of Decomposition 2.5, i.e.

(6.11) L2(µ) = Image(P ∗)⊕Ker(P ) = −J(∇C∞
c

µ
)⊕−J(Ker(divµ)).

Let us now introduce the following notation: given any map P de-
fined on L2(µ), let P ′ denote its restriction to the closed subspace
TµM = Image(πµ). Consider once again P := πµ◦J . Then Image(P ′) ⊆
Image(πµ) so we can think of P ′ as a map P ′ : TµM→ TµM, yielding
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a decomposition TµM = Image(P ′) ⊕ Ker(P ′∗). It is simple to check
that

P ′∗ = (πµ ◦ P ∗)′ = (πµ ◦ (−J) ◦ πµ)′.

Since πµ ≡ Id on TµM we conclude that P ′∗ = −P ′, i.e. P ′ is anti-
selfadjoint. This implies that Ker(P ′∗) = Ker(P ′) so

(6.12) TµM = Image(P ′)⊕Ker(P ′) = TµO ⊕Ker(P ′).

We can summarize this as follows.

Lemma 6.19. For any µ ∈M there exist orthogonal decompositions
(6.13)
L2(µ) = HamXc

µ ⊕Ker(πµ ◦ J), TµM = TµO ⊕Ker((πµ ◦ J)|TµM).

In particular, this describes the orthogonal complements of the sub-
spaces HamXc

µ
and TµO.

Remark 6.20. It follows from Example 6.12 that if µ = δx then the
map P ′ is an isomorphism. If instead µ = ρL for some ρ > 0 then P ′

is neither injective nor surjective.

Now assume that TµO is closed in TµM. It then follows from Decom-
position 6.12 that the restriction P ′′ of P to TµO gives an isomorphism
P ′′ : TµO → TµO. Set A := −(P ′′)−1 so that A−1 = −P ′′. It is
simple to check that Ωµ(·, ·) = Gµ(A·, ·). Indeed, choose X, Y ∈ TµO.

Then X = P ′′(X̂) = πµ ◦ J(X̂) for some X̂ ∈ TµO. Analogously,

Y = πµ ◦ J(Ŷ ). Then, using the fact that X̂ ∈ TµM,

Ωµ(X, Y ) =

∫
ω(JX̂, JŶ ) dµ = −

∫
〈X̂, JŶ 〉 dµ

= −
∫
〈X̂, πµ(JŶ )〉 dµ = −Gµ(X̂, Y )

= Gµ(AX, Y ).

In other words, A is the automorphism of TµO relating Ωµ and Gµ as
in Definition 6.17. In particular this proves the following result.

Lemma 6.21. Assume that TµO is closed in TµM. Then the map

Ω[
µ : TµO → TµO∗, X 7→ Ωµ(X, ·)

is an isomorphism.

Remark 6.22. If µ is a Dirac measure it is clearly the case that Gµ and
Ωµ are a compatible pair in the sense of Definition 6.17. This amounts
to stating that (P ′′)2 = π ◦ J ◦ π ◦ J = −Id on TµO. It is not clear if
this is true in general.
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7. The symplectic foliation as a Poisson structure

Most naturally occurring symplectic foliations owe their existence to
an underlying Poisson structure. The symplectic foliation described in
Section 6.2 is no exception. The existence of a Poisson structure on a
certain space of distributions was pointed out in [31]. It boils down to
the fact that the symplectic structure on R2d adds new structure into
the framework of Section 3.3. The goal of this section is to explain
this in detail and to show that, reduced to M, this Poisson structure
coincides with the symplectic structure Ω defined in Section 6.2. We
start with a brief presentation of finite-dimensional Poisson Geometry,
referring to [30] for details.

7.1. Review of Poisson geometry. Recall from Section 6.1 that any
symplectic structure ω on a manifold M induces a Lie bracket on the
space of functions C∞(M). Using the Liebniz rule for the derivative of
the product of two functions, we see that the corresponding operators
{·, h} have the following property:

{fg, h} = d(fg)(Xh) = df(Xh)g + dg(Xh)f = {f, h}g + {g, h}f.
This leads to the following natural “weakening” of Symplectic Geome-
try.

Definition 7.1. Let M be a smooth manifold. A Poisson structure on
M is a Lie bracket {·, ·} on C∞(M) such that each operator {·, h} is a
derivation on functions, i.e.

{fg, h} = {f, h}g + {g, h}f.
A Poisson manifold is a manifold endowed with a Poisson structure.

On any finite-dimensional manifold it is known that the space of
derivations on functions is isomorphic to the space of vector fields.
Thus on any Poisson manifold any function h defines a vector field
which we denote Xh: it is uniquely defined by the property that

df(Xh) = {f, h}, ∀f ∈ C∞(M).

We call Xh the Hamiltonian vector field defined by h. As in Section
6.1, this process defines a map

(7.1) C∞(M) → X (M), f 7→ Xf .

The kernel of this map includes the space of constant functions, but
in general it will be larger. We call these the Casimir functions of the
Poisson manifold. Its image defines the space Ham(M) of Hamiltonian
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vector fields. Lemma 6.4 applies with the same proof to show that the
map of Equation 7.1 is a Lie algebra homomorphism (up to sign).

At each point x ∈M , the set of Hamiltonian vector fields evaluated
at that point define a subspace of TxM . The union of such subspaces is
known as the characteristic distribution of the Poisson manifold. This
distribution is involutive in the sense that M admits a smooth foliation
such that each subspace is the tangent space of the corresponding leaf.
In particular each leaf has a well-defined dimension, but this dimension
may vary from leaf to leaf. Each leaf has a symplectic structure defined
by setting

(7.2) ω(Xf , Xg) := {f, g}.
Remark 7.2. Notice that for any given Hamiltonian vector field Xf , the
corresponding function f is well-defined only up to Casimir functions.
It is however simple to check that ω is a well-defined 2-form on each
leaf, i.e. it is independent of the particular choices made for f and g.
It is also non-degenerate. The fact that ω is closed follows from the
Jacobi identity for {·, ·}.
Remark 7.3. Notice that the definition of a Poisson manifold does not
include a metric. Thus there is in general no intrinsic way to extend ω
to a 2-form on M .

The following result is standard.

Proposition 7.4. Any Poisson manifold admits a symplectic foliation,
of varying rank. Each leaf is preserved by the flow of any Hamiltonian
vector field. Any Casimir function restricts to a constant along any
leaf of the foliation.

Poisson manifolds are of interest in Mechanics because they pro-
vide the following generalization of the standard symplectic notion of
Hamiltonian flows.

Definition 7.5. A Hamiltonian flow on M is a solution of the equation
d/dt(xt) = Xf (xt), for some function f on M .

It follows from Proposition 7.4 that if the initial data belongs to
a specific leaf, then the corresponding Hamiltonian flow is completely
contained within that leaf. It is simple to check that if xt is Hamiltonian
then f is constant along xt.

7.2. Example: the dual of a Lie algebra. The theory of Lie alge-
bras provides one of the primary classes of examples of Poisson mani-
folds. To explain this we introduce the following notation, once again
restricting our attention to the finite-dimensional case. Let V be a
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finite-dimensional vector space, whose generic element will be denoted
v. Let V ∗ be its dual, with generic element φ. Let V ∗∗ be the bidual
space, defined as the space of linear maps V ∗ → R. We will think of
this as a subspace of the space of smooth maps on V ∗, with generic
element f = f(φ). We can identify V with V ∗∗ via the map

(7.3) V → V ∗∗, v 7→ fv where fv(φ) := φ(v).

Now assume V is a Lie algebra. We will write V = g. Consider
the vector space g∗ dual to g. We want to show that the Lie algebra
structure on g induces a natural Poisson structure on g∗. Let f be
a smooth function on g∗. Its linearization at φ is an element of the
bidual: ∇f|φ ∈ g∗∗. It thus corresponds via the map of Equation 7.3
to an element δf/δφ|φ ∈ g. We can now define a Lie bracket on g∗ by
setting:

(7.4) {f, g}(φ) := φ([δf/δφ|φ, δg/δφ|φ]),

where [·, ·] denotes the Lie bracket on g. One can show that this op-
eration satisfies the Jacobi identity and defines a Poisson structure on
g∗.

Example 7.6. Assume f is a linear function on g∗, f = fv (as in
Equation 7.3). Then δf/δφ ≡ v, so {fv, fw}(φ) = φ([v, w]).

We now want to characterize the Hamiltonian vector fields and sym-
plectic leaves of g∗. Unsurprisingly, this is best done in terms of Lie
algebra theory. Every finite-dimensional Lie algebra is the Lie algebra
of a (unique connected and simply connected) Lie group G. Recall
from Section A.2 the adjoint representation of G on g,

G→ Aut(g), g 7→ Adg.

Differentiating this defines the adjoint representation of g on g,

(7.5) ad : g → End(g), v = d/dt(gt)|t=0 7→ adv := d/dt(Adgt)|t=0

It follows from Lemma A.12 that adv(w) = [v, w].
By duality we obtain the coadjoint representation of G on g∗,

G→ Aut(g∗), g 7→ (Adg−1)∗.

Notice that once again we have used inversion to ensure that this re-
mains a left action, cfr. Remark A.9. We can differentiate this to obtain
the coadjoint representation of g on g∗, which can also be written in
terms of the duals of the maps in Equation 7.5:

(7.6) ad∗ : g → End(g∗), v 7→ (−adv)
∗.

The following result is standard.
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Lemma 7.7. The Hamiltonian vector field corresponding to a smooth
function f on g∗ is

Xf (φ) := (−adδf/δφ|φ)∗(φ).

Thus the leaves of the symplectic foliation of g∗ are the orbits of the
coadjoint representation.

7.3. The symplectic foliation on M, revisited. Following [31] we
now apply the ideas of Section 7.2 to the case where g is the Lie al-
gebra of Hamc(R2d). Since this is an infinite-dimensional algebra, the
following discussion will be purely formal.

We saw in Remark 6.2 that g can be identified with the space of
compactly-supported functions:

(7.7) C∞
c (R2d) ' HamXc(R2d), f 7→ Xf .

Its dual is then the distribution space (C∞
c )∗. Section 7.2 suggests

that (C∞
c )∗ has a canonical Poisson structure, defined as in Equation

7.4. We can identify the Poisson bracket, Hamiltonian vector fields and
symplectic leaves on (C∞

c )∗ very explicitly, as follows.
For simplicity let us restrict our attention to the linear functions on

(C∞
c )∗ defined by functions f ∈ C∞

c as follows:

(7.8) Ff : (C∞
c )∗ → R, Ff (µ) := 〈µ, f〉.

Example 7.6 shows that the Poisson bracket of two such functions Ff

and Fg can be written in terms of the Lie bracket on C∞
c :

(7.9) {Ff , Fg}(C∞c )∗(µ) = 〈µ, {f, g}R2d〉 = 〈µ, ω(Xf , Xg)〉.

Lemma 7.7 gives an explicit formula for the corresponding Hamiltonian
vector fields XFf

: at µ ∈ (C∞
c )∗, XFf

(µ) ∈ Tµ(C∞
c )∗ = (C∞

c )∗ is given
by

〈XFf
(µ), g〉 = 〈(−adf )

∗(µ), g〉 = 〈µ,−adf (g)〉
= 〈µ,−{f, g}R2d〉 = 〈µ, dg(Xf )〉
= −〈divµ(Xf ), g〉.

In other words, XFf
(µ) = −divµ(Xf ).

Lemma 7.7 also shows that the leaves of the symplectic foliation are
the orbits of the coadjoint representation of Hamc(R2d) on (C∞

c )∗. Let
us identify the coadjoint representation explicitly. Recall from Lemma
A.20 that the adjoint representation of Hamc(R2d) on HamXc is the
push-forward operation. Lemma 6.3 shows that, under the isomor-
phism of Equation 7.7, push-forward becomes composition. Thus the
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adjoint representation of Hamc(R2d) on HamXc corresponds to the fol-
lowing representation of Hamc(R2d) on C∞

c (R2d):

(7.10) Ad : Hamc(R2d) → Aut(C∞
c (R2d)), Adφ(f) := f ◦ φ−1.

The following calculation then shows that the coadjoint representa-
tion of Hamc(R2d) on (C∞

c )∗ is simply the natural action of Hamc(R2d)
introduced in Section 3.3:

〈Adφ−1)∗(µ), f〉 = 〈µ,Adφ−1(f)〉 = 〈µ, f ◦ φ〉 = 〈φ · µ, f〉.
The symplectic structure on each leaf is given by Equation 7.2:
(7.11)

ωµ(−divµ(Xf ),−divµ(Xg)) := {f, g}(C∞c )∗(µ) = 〈µ, ω(Xf , Xg)〉.

Remark 7.8. Notice that Poisson brackets and Hamiltonian vector fields
are of first order with respect to the functions involved. We can use
this fact to reduce the study of general functions F : (C∞

c )∗ → R to the
study of linear functions on (C∞

c )∗, as presented above. For example if
∇µF = ∇µFf , for some linear Ff as above, then XF (µ) = XFf

(µ).

Let us now restrict our attention to M⊂ (C∞
c )∗. We want to show

that the data defined by the Poisson structure on (C∞
c )∗ restricts to

the objects defined in Section 6.2. Firstly, M is Hamc(R2d)-invariant
and the action of Hamc(R2d) on (C∞

c )∗ restricts to the standard push-
forward action onM. This shows that the leaves defined above, passing
through M, coincide with the G-orbits of Section 6.2. Now recall from
Section 3.3 that, given µ ∈ M, the operator −divµ is the natural
isomorphism relating the tangent planes of Definition 2.5 to the tangent
planes of M⊂ (C∞

c )∗. Equation 7.11 can thus be re-written as

ωµ(πµ(Xf ), πµ(Xg)) :=

∫
R2d

ω(Xf , Xg) dµ,

showing that the symplectic structure defined this way coincides with
the symplectic form Ωµ defined in Equation 6.9.

We can also use this framework to justify Definition 6.16 by showing
that the Hamiltonian vector fields defined there formally coincide with
the Hamiltonian vector fields of the restricted Poisson structure. Let
F : M → R be a differentiable function on M. Fix µ ∈ M. Up to
L2

µ-closure, we can assume that ∇µF = ∇f , for some f ∈ C∞
c (R2d).

Example 4.13 shows that ∇f = ∇µFf , where Ff is the linear function
defined in Equation 7.8. Using Remark 7.8, the Hamiltonian vector of
F at µ defined by the Poisson structure is thus XF (µ) = XFf

(µ) =
−divµ(Xf ). In terms of the tangent space TµM, we can write this as

(7.12) XF (µ) = πµ(Xf ) = πµ(−J∇f) = πµ(−J∇µF ).
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It thus coincides with the vector field given in Definition 6.16.

Remark 7.9. The identification of (C∞
c )∗ with the dual Lie algebra of

Hamc(R2d) relied on the normalization introduced in Remark 6.2. In
turn, this was based on our choice to restrict our attention to diffeo-
morphisms with compact support. In some situations one might want
to relax this assumption. This would generally mean losing the possi-
bility of a normalization so Equation 6.3 would leave us only with an
identification HamX ' C∞(M)/R. Dualizing this space would then,
roughly speaking, yield the space of measures of integral zero: we would
thus get a Poisson structure on this space but not on M. However this
issue is purely technical and can be avoided by changing Lie group, as
follows.

Consider the group G of diffeomorphisms on R2d ×R preserving the
contact form dz − yidxi. It can be shown that its Lie algebra is iso-
morphic to the space of functions on R2d ×R which are constant with
respect to the new variable z: it is thus isomorphic to the space of func-
tions on R2d, so the dual Lie algebra is, roughly, the space of measures
on R2d; in particular, it contains M as a subset. This group has a one-
dimensional center Z ' R, defined by translations with respect to z.
The center acts trivially in the adjoint and coadjoint representations,
so the coadjoint representation reduces to a representation of the group
G/Z, which one can show to be isomorphic to the group of Hamilton-
ian diffeomorphisms of R2d. The coadjoint representation of G reduces
to the standard push-forward action of Hamiltonian diffeomorphisms,
and the theory can now proceed as before.

Appendix A. Review of some notions of Diff. Geometry

The goal of the first two sections of this appendix is to summarize
standard facts concerning Lie groups and calculus on finite-dimensional
manifolds, thus laying out the terminology, notation and conventions
which we use throughout this paper. The third section provides some
basic facts concerning the infinite-dimensional Lie groups relevant to
this paper. We refer to [25] and [30] for details.

A.1. Calculus of vector fields and differential forms. Let M be
a connected differentiable manifold of dimension D, not necessarily
compact. Let Diff(M) denote the group of diffeomorphisms of M . Let
C∞(M) denote the space of smooth functions on M . Let TM denote
the tangent bundle ofM and X (M) the corresponding space of sections,
i.e. the space of smooth vector fields. Let T ∗M denote the cotangent
bundle of M . To simplify notation, ΛkM will denote both the bundle
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of k-forms on M and the space of its sections, i.e the space of smooth
k-forms on M . Notice that Λ0(M) = C∞(M) and Λ1M = T ∗M (or
the space of smooth 1-forms).

Let φ ∈ Diff(M). Taking its differential yields linear maps

(A.1) ∇φ : TxM → Tφ(x)M, v 7→ ∇φ · v,
thus a bundle map which we denote ∇φ : TM → TM . We will call

∇φ the lift of φ to TM .
By duality we obtain linear maps

(∇φ)∗ : T ∗φ(x)M → T ∗xM, α 7→ α ◦ ∇φ,
and more generally k-multilinear maps

(A.2) (∇φ)∗ : Λk
φ(x)M → Λk

xM, α 7→ α(∇φ ·, . . . ,∇φ ·).

This defines bundle maps (∇φ)∗ : ΛkM → ΛkM which we call the lift
of φ to ΛkM .

Remark A.1. Notice the different behaviour under composition of dif-
feomorphisms: ∇(φ◦ψ) = ∇φ◦∇ψ while (∇(φ◦ψ))∗ = (∇ψ)∗◦(∇φ)∗.
We will take this into account and generalize it in Section A.2 via the
notion of left versus right group actions.

We can of course apply these lifted maps to sections of the corre-
sponding bundles. In doing so one needs to ensure that the correct
relationship between TxM and Tφ(x)M is maintained; we emphasize
this with a change of notation, as follows.

The push-forward operation on vector fields is defined by

(A.3) φ∗ : X (M) → X (M), φ∗X := (∇φ ·X) ◦ φ−1.

The corresponding operation on k-forms is the pull-back, defined by

(A.4) φ∗ : Λk(M) → Λk(M), φ∗α := ((∇φ)∗α) ◦ φ.

Definition A.2. Let V be a vector space. A bilinear antisymmetric
operation

V × V → V, (v, w) 7→ [v, w]

is a Lie bracket if it satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

A Lie algebra is a vector space endowed with a Lie bracket.

The space of smooth vector fields has a natural Lie bracket. Given
two vector fields X, Y on M , we define [X, Y ] in local coordinates as
follows:

[X, Y ] := ∇Y ·X −∇X · Y.
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It is simple to show that this operation indeed satisfies the Jacobi
identity. Let φt denote the flow of X on RD, i.e. the 1-parameter
group of diffeomorphisms obtained by integrating X as follows:

(A.5) d/dt(φt(x)) = X(φt(x)), φ0(x) = x.

It is then simple to check that

(A.6)
[X, Y ] = −d/dt(φt∗Y )|t=0 = d/dt(φ−t∗Y )|t=0 = d/dt((φ−1

t )∗Y )|t=0.

Equation A.6 gives a coordinate-free expression for the Lie bracket.
It also suggests an analogous operation for more general tensor fields.
We will restrict our attention to the case of differential forms.

Let α be a smooth k-form on M . Let X, φt be as above. We define
the Lie derivative of α in the direction of X to be the k-form defined
as follows:

(A.7) LXα := d/dt(φ∗tα)|t=0.

The fact that t 7→ φt is a homomorphism leads to the fact that
d/dt(φ∗tα)|t=t0 = φ∗t0(LXα). Thus LXα ≡ 0 if and only if φ∗tα ≡ α, i.e.
φt preserves α. This can be generalized to time-dependent vector fields
as follows.

Lemma A.3. Let Xt be a t-dependent vector field on M . Let φt =
φt(x) be its flow, defined by

(A.8) d/dt(φt(x)) = Xt(φt(x)), φ0(x) = x.

Let α be a k-form on M . Then d/dt(φ∗tα)|t0 = φ∗t0(LXt0
α). In particu-

lar, φ∗tα ≡ α iff LXtα ≡ 0.

Proof: For any fixed s, let ψs
t be the flow of Xs, i.e.

d/dt(ψs
t (x)) = Xs(ψ

s
t (x)), ψs

0(x) = x.

Then ψt0
t ◦ φt0(x) satisfies

d/dt(ψt0
t ◦ φt0(x))|t=0 = Xt0(φt0(x)), ψt0

0 ◦ φt0(x) = φt0(x)

so ψt0
t ◦ φt0(x) at t = 0 and φt at t = t0 coincide up to first order,

showing that

d/dt(φ∗tα)|t=t0 = d/dt((ψt0
t ◦ φt0)

∗α)|t=0

= φ∗t0(d/dt((ψ
t0
t )∗α)|t=0) = φ∗t0(LXt0

α).

QED.
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Notice that if we define φ∗Y := (φ−1)∗Y and we define LXY :=
d/dt(φ∗tY )|t=0, then Equation A.6 shows that LXY = [X, Y ].

Remark A.4. Various formulae relate the above operations, leading to
quick proofs of useful facts. For example, the fact

(A.9) L[X,Y ]α = LX(LY α)− LY (LXα)

shows that if the flows of X and Y preserve α then so does the flow of
[X, Y ]. Also,

(A.10) φ∗LXα = Lφ∗Xφ
∗α.

Remark A.5. Notice that LXY is not a “proper” directional derivative
in the sense that it is of first order also in the vector field X. In general
the same is true for the Lie derivative of any tensor. The case of 0-
forms, i.e. functions, is an exception. In this case LXf = df(X) is
of order zero in X and coincides with the usual notion of directional
derivative. We will often simplify the notation by writing it as Xf .

We now want to introduce the exterior differentiation operator on
smooth forms. Let α be a k-form on M . Fix any point x ∈ M and
tangent vectors X0, . . . , Xk ∈ TxM . Choose any extension of each Xj

to a global vector field which we will continue to denote Xj. Then, at
x,

dα(X0, . . . , Xk) :=
k∑

j=0

(−1)jXjα(X0, . . . , X̂j, . . . , Xk)

=
∑
j<l

(−1)j+lα([Xj, Xl], X0, . . . , X̂j, . . . , X̂l, . . . , Xk)(A.11)

where on the right hand side the subscriptˆdenotes an omitted term
and we adopt the notation for directional derivatives introduced in
Remark A.5.

Lemma A.6. dα is a well-defined (k+1)-form, i.e. at any point x ∈M
it is independent of the choice of the extension. Exterior differentiation
defines a first-order linear operator

(A.12) d : ΛkM → Λk+1M

satisfying d ◦ d = 0.

Remark A.7. It is not clear from the above definition that dα is ten-
sorial in X0, . . . , Xk, i.e. that it is independent of the choice of ex-
tensions. The point is that cancelling occurs to eliminate the first
derivatives of Xj which appear in Equation A.11. This is the main
content of Lemma A.6, which is proved by showing that Equation
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A.11 is equivalent to the usual, local-coordinate, definition of dα. For
example, let α =

∑D
i=1 αi(x)dx

i be a smooth 1-form on RD. Then

dα =
∑

j<i

(
∂αi

∂xj − ∂αj

∂xi

)
dxj ∧ dxi. If we identify α with the vector field

x→ (α1(x), · · · , αD(x))T then dα(X,Y ) = 〈(∇α−∇αT )X, Y 〉.

Given a k-form α and a vector field X, let iXα denote the (k-1)-
form α(X, ·, . . . , ·) obtained by contraction. Then the Lie derivative
and exterior differentiation are related by Cartan’s formula:

(A.13) LXα = d iXα+ iXdα.

A.2. Lie groups and group actions. Recall that a group G is a Lie
group if it has the structure of a smooth manifold and group multi-
plication (respectively, inversion) defines a smooth map G × G → G
(respectively, G→ G). We denote by e the identity element of G.

Definition A.8. We say that G has a left action or acts on the left or,
more simply, acts on a smooth manifold M if there is a smooth map

G×M →M, (g, x) 7→ g · x
such that g · (h · x) = (gh) · x. To simplify the notation we will often
write gx rather than g ·x. It is simple to see that if G acts to the left on
M then every g ∈ G defines a diffeomorphism of M . More specifically,
the action defines a group homomorphism G→ Diff(M).

We say that G has a right action or acts on the right on M if the
opposite composition rule holds: g · (h · x) = hg · x. In this case it
is standard to change the notation, writing x · g rather than g · x:
this makes the composition rule seem more natural but does not affect
the substance of the definition, i.e. the fact that the induced map
G→ Diff(M) is now a group antihomomorphism.

Remark A.9. Notice that any left action induces a natural right action
as follows: x · g := g−1 · x. Conversely, any right action induces a
natural left action: g · x := x · g−1.

For any group action we can repeat the constructions of Equations
A.1 and A.2. For example a left action of G on M induces a lifted left
action of G on TM as follows:

G× TM → TM, g(x, v) := (gx,∇g · v).
However, we need to apply the trick introduced in Remark A.9 to
obtain a coherent lifted action on T ∗M or ΛkM . For example we can
define a lifted left action by setting

G× ΛkM → ΛkM, g(x, α) := (gx, (∇g−1)∗α)
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or a lifted right action by setting

G× ΛkM → ΛkM, g(x, α) := (g−1x, (∇g)∗α).

We can also repeat the constructions of Equations A.3 and A.4. We
thus find an induced action of G on vector fields, defined by

(A.14) G×X → X , g ·X := g∗X.

Like-wise, there is an induced action of G on k-forms. On the other
hand, with respect to Section A.1 there now exists a new operation,
as follows. Choose v = d/dt(gt)|t=0 ∈ TeG. For any x ∈ M we can
define the tangent vector v(x) := d/dt(gt · x)|t=0. This defines a global
vector field on M , called the fundamental vector field associated to v.
We have thus built a map TeG→ X .

Let us now specialize to the case M = G. Any Lie group G admits
two natural left actions on itself. Studying these actions leads to a
deeper understanding of the geometry of Lie groups, thus of group
actions. The first action is given by left translations, as follows:

L : G×G→ G, (g, h) 7→ Lg(h) := gh.

Let e ∈ G denote the identity element. Fix v = d/dt(gt)|t=0 ∈ TeG.
The differential ∇Lg maps TeG to TgG. We may thus define a global
vector field Xv on G by setting Xv(g) := ∇Lg · v = d/dt(ggt)|t=0. This
vector field has the property of being left-invariant with respect to the
action of G, i.e. Lg∗Xv = Xv. Viceversa, any left-invariant vector field
arises this way.

Remark A.10. Given any v ∈ TeG, we have now defined two construc-
tions of a global vector field on G associated to v: the fundamental
vector field v and the left-invariant vector field Xv. The relationship
between these constructions can be clarified as follows. There is a
natural right action of G on itself, defined by right translations

L : G×G→ G, (g, h) 7→ Rg(h) := hg.

As above, the differentials define a global vector field ∇Rg · v. It is
simple to check that this vector field coincides with the fundamental
vector field v. It is right-invariant, i.e. Rg∗v = v.

Lemma A.11. The set of left-invariant vector fields is a finite dimen-
sional vector space isomorphic to TeG. The Lie bracket of left-invariant
vector fields is a left-invariant vector field.

It follows from Lemma A.11 that TeG admits a natural operation
[v, w] such that X[v,w] = [Xv, Xw]. It follows from the Jacobi identity
on vector fields that TeG equipped with this structure is a Lie algebra:
we call it the Lie algebra of G and denote it by g.
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The second action of G on itself is the adjoint action defined by the
inner automorphisms Ig(h) := ghg−1. Each of these fixes the identity
and thus defines a map

(A.15) Adg := ∇Ig : TeG→ TeG,

i.e. an automorphism of TeG. In other words the adjoint action of G
on G induces a left action of G on TeG called the adjoint representation
of G.

The adjoint representation of G provides a useful way to calculate
Lie brackets on g, as follows.

Lemma A.12. Fix v, w ∈ g. Assume v = d/dt(gt)|t=0 for some gt ∈ G.
Then [v, w] = d/dt(Adgtw)|t=0.

Proof: Assume w = d/ds(hs)|s=0. By definition,

(A.16) d/dt(Adgt(w))|t=0 = d/dt d/ds(gthsg
−1
t )|t,s=0.

Notice that

(A.17) Xv(g) = ∇Lg(v) = d/dt(ggt)|t=0 = d/dt(Rgt(g))|t=0.

In particular this shows that, for t = 0, Rgt coincides with the flow of
Xv up to first order. Thus

[v, w] = (LXvXw)|e = d/dt((Rgt)
∗Xw)|e; t=0 = d/dt((Rg−1

t
)∗Xw)|e; t=0

= d/dt((∇Rg−1
t

)|gtXw |gt
)|t=0 = d/dt((∇Rg−1

t
)|gtd/ds(gths)|s=0)t=0

= d/dt d/ds(gthsg
−1
t )|s,t=0.

QED.

Remark A.13. It is sometimes useful to distinguish the vector space
TeG from the Lie algebra g, so as to distinguish between maps or con-
structions which involve the Lie bracket and those which do not. Our
notation will sometimes reflect this.

For example, one can show that the construction of fundamental
vector fields actually defines a Lie algebra homomorphism g → X .
Analogously one can show that every Adg is an automorphism of g, i.e.
it preserves the Lie algebra structure: Adg([v, w]) = [Adgv, Adgw].

Let us now return to the general case of a Lie group acting on a
manifold M . We can apply the above information on the geometry of
Lie groups to develop a better understanding of the geometric aspects
of the group action.
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Definition A.14. Assume G acts on M . Fix x ∈ M . The orbit of x
in M is the subset

Ox := {g · x : g ∈ G} ⊆M.

Notice that Ogx = Ox. The stabilizer of x in G is the closed subgroup

Gx := {g ∈ G : g · x = x} ⊆ G.

This is again a Lie group. We denote its Lie algebra gx: it is a sub-
algebra of g. It is simple to check that Ggx = g · Gx · g−1 and that
ggx = Adg(gx).

Lemma A.15. Assume G acts on M . Then:

(1) Each quotient group G/Gx has a smooth structure. The pro-
jection G → G/Gx is a smooth map. Its differential gives an
identification TeG/TeGx = Te(G/Gx).

(2) The group action defines a smooth 1:1 immersion j : G/Gx →
M with image Ox. Thus Ox is a smooth immersed (not nec-
essarily embedded) submanifold of M . In particular the group
action defines a smooth foliation of M , the leaves being the or-
bits of the action.

(3) Let O be any orbit in M . For any x ∈ O, fundamental vector
fields provide a surjective map

(A.18) qx : TeG→ TxO, v = d/dt(gt)|t=0 7→ v(x) = d/dt(gtx)|t=0

with kernel TeGx. The corresponding identification TeG/TeGx =
TxO coincides with ∇j : TeG/TeGx → TxO.

Remark A.16. Assume x, y ∈ M belong to the same orbit, i.e. y =
gx for some g ∈ G. The lifted action of G on TM then induces an
isomorphism ∇g : TxM → TyM which preserves the tangent spaces to
the orbit. Choose v = d/dt(gtx)|t=0 ∈ TxO. Then

(A.19) ∇g(v) = d/dt(ggtx)t=0 = d/dt(ggtg
−1gx)|t=0 = Adg(v)(y).

In other words, the following diagram is commutative:

TeG
Adg−−−→ TeG

qx

y qy

y
TxO

∇Lg−−−→ TyO
where qx and qy denote the maps of Equation A.18.

Definition A.17. Assume G acts on M . A differential form α on M
is G-invariant if, for all g ∈ G, g∗α = α. We will denote by Λk(MG)
the space of G-invariant k–forms on M .
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For the purposes of Section 4.2 (cfr. in particular Remark 4.8), the
following example is particularly interesting. Assume M is a Lie group
G. Choose a closed subgroup H of G and consider the right action of H
on G defined by right multiplication. Fundamental vector fields provide
an identification TeG→ TgG for any g ∈ G, i.e. a parallelization of G.
Using this identification we can identify the space of all k-forms Λk(G)
with the space of maps G→ Λk(TeG). The space of invariant k-forms
on G can then be written

Λk(GH) := {α ∈ Λk(G) : Rh
∗α = α}

= {α : G→ Λk(TeG) : α(gh) = α(g), ∀g ∈ G, ∀h ∈ H}
= {α : G/H → Λk(TeG)}.

It may be useful to emphasize that the latter is not the space of k-forms
on G/H.

Remark A.18. Recall that, given any k-form on M and diffeomorphism
φ ∈ Diff(M), d(φ∗α) = φ∗(dα). In particular, the space of invariant
forms is preserved by the operator d so it defines G-invariant de Rham
cohomology groups. We refer to [10] Section V.12 for details, in par-
ticular for the relationship with the standard de Rham cohomology of
M .

A.3. The group of diffeomorphisms. Let Diffc(RD) denote the set
of diffeomorphisms of RD with compact support, i.e. those which co-
incide with the identity map Id outside of a compact subset of RD.
Composition of maps clearly yields a group structure on Diffc(RD).
It is possible to endow Diffc(RD) with the structure of an infinite-
dimensional Lie group in the sense of [35]. A local model is provided
by the space Xc(RD), endowed as in Section 2.1 with the structure of
a topological vector space. More specifically, we can apply the con-
struction outlined in Remark A.21 below to build a local chart U for
Diffc(RD) near the identity element Id. This yields by definition an
isomorphism TIdDiffc(RD) ' Xc(RD). We can then use right multipli-
cation to build charts Uφ := {u ◦φ : u ∈ U} around any φ ∈ Diffc(RD),
leading to TφDiffc(RD) ' {X ◦ φ : X ∈ Xc(RD)}. Thoughout this arti-
cle we will generally restrict our attention to the connected component
of Diffc(RD) containing Id.

Remark A.19. It may be useful to emphasize that defining charts on
Diffc(RD) as above leads to the following interpretation of Equation
A.8: φt is a smooth path on Diffc(RD) and Xt ◦φt ∈ TφtDiffc(RD) is its
tangent vector field.
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As usual one can define the Lie algebra to be the tangent space at Id.
The Lie bracket [·, ·]g on this space can then be defined as in Section
A.2, cfr. [35].

Lemma A.20. The adjoint representation of Diffc(RD) on Xc(RD)
coincides with the push-forward operation: Adφ(X) = φ∗(X). Further-
more, the Lie bracket on Xc(RD) induced by the Lie group structure on
Diffc(RD) is the negative of the standard Lie bracket on vector fields.

Proof: Assume that X integrates to φt ∈ Diffc(RD). Then

Adφ(X) = d/dt(φ ◦ φt ◦ φ−1)|t=0 = ∇φ|φ−1 ·X|φ−1 = φ∗(X).

As in Lemma A.12 we can calculate the Lie bracket by differentiating
the adjoint representation. Thus:

[X, Y ]g = d/dt(AdφtY )|t=0 = d/dt(φt∗Y )|t=0 = −[X,Y ].

QED.

Remark A.21. A similar construction proves that for any compact
(respectively, noncompact) manifold M the group of diffeomorphisms
Diff(M) (respectively, Diffc(M)) is an infinite-dimensional Lie group in
the sense of [35]. Some care has to be exercised however in all these
constructions, specifically in the definition of the local chart near Id.
The naive choice

X (M) → Diff(M), X 7→ φ1,

where φ1 is the time t = 1 diffeomorphism obtained by integrating X to
the flow φt, is not possible as it does not cover an open neighbourhood
of Id, cfr. [35] Warning 1.6. Instead, the standard trick is to notice
that diffeomorphisms near Id are in a 1:1 relationship (via their graphs)
with smooth submanifolds close to the diagonal ∆ ⊂ M ×M . These
submanifolds can then be parametrized as follows. Assume E →M is
a vector bundle over M . Let Z denote its zero section and U denote
an open neighbourhood of Z. Assume one can find a diffeomorphism
ζ : U →M ×M sending Z to ∆. Then diffeomorphisms of M near Id
correspond to smooth submanifolds of E near Z, i.e. smooth sections.
For example, to construct a chart for diffeomorphisms close to Id we
would use E := TM setting ζ to be the Riemannian exponential map
(with respect to a fixed metric on M).

Good choices of E and ζ for Diff(M) can yield as a by-product the
fact that specific subgroups G of Diff(M) also admit Lie group struc-
tures such that the natural immersion G → Diff(M) is smooth. For
example, to prove this fact for the subgroups of symplectomorphisms
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or Hamiltonian diffeomorphisms of a symplectic manifold (M,ω) (see
Section 6.1) one can choose E := T ∗M and the ζ defined by Wein-
stein’s “Lagrangian neighbourhood theorem”, cfr. [43] Section 6 or
[34] Proposition 3.34.
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